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graphene. [ 13 ]  In this work, we conducted a detailed investigation 
into the n-type doping effect of DMC on graphene grown using 
CVD. We also observed that the work function  φ  decreased 
quasilinearly as the logarithm of DMC solution concentration 
([DMC]) increased; this relationship has obvious applications 
to tuning graphene properties for practical applications. We 
discuss the role of single- and double-layer fractions in deter-
mining the overall properties of n-doped CVD-grown graphene 
and explain the cause of the phenomenon theoretically. We also 
fabricated large-scale, well-aligned graphene nanoribbon fi eld-
effect transistor (GNRFET) arrays using electrohydrodynamic-
printed-nanowire (e-NW) lithography, then n-type doped them 
and evaluated their electrical transport property and stability. 

 DMC was used to dope CVD-grown graphene that contains 
a mixture of single layers and double layers ( Figure    1  , and Sup-
porting Information, SI-1). Raman spectroscopy is a powerful 
tool for studying the properties of graphene, such as the number 
of layers and the effects of doping. [ 14,15 ]  The Raman spectra with 
typical G (1580–1590 cm −1 ) and 2D bands (2690–2710 cm −1 ) 
of the annealed and doped graphene is compared ( Figure    2  a). 
The spectra showed the typical shifts of G and 2D peaks of the 
graphene fi lms after doping. As [DMC] increased, the G band 
shifted to a higher wavenumber by 5 cm −1 , and the 2D band 
shifted to a lower wavenumber by 6 cm −1 ; these changes sug-
gest that the annealed graphene was n-type doped [ 3 ]  by DMC 
and that the doping effect could be enhanced by increasing 
[DMC]. This is similar to the effect of aromatic molecules with 

  Graphene has possible applications in post-silicon nano-
electronics due to its high charge-carrier mobility, anomalous 
quantum Hall effect, and massless relativistic carriers. [ 1,2 ]  Gra-
phene usually works as a p-type material in air because of the 
presence of dangling bonds, adsorbed molecules, and residual 
polymers, although it is known theoretically to be ambipolar. [ 3–5 ]  
For complementary circuit applications, p-type graphene must 
be integrated with n-type graphene on a large scale. [ 6 ]  Efforts 
have been made to investigate n-doping of single- or double-
layer graphene. [ 7 ]  However, graphene growth by using chemical 
vapor deposition (CVD) on copper often produces a mixture 
of single- and double-layer graphene instead of pure single- 
or double layers. [ 8 ]  Although some initial attempts to n-dope 
CVD-grown graphene have been reported, [ 9,10 ]  the properties of 
doped CVD-grown graphene thus cannot be simply explained 
by the predictions on n-doping of pure single- or double-layer 
graphene and the dependence of the overall properties of the 
doped-graphene mixture on single- and double layer fractions 
is still not understood. 

 n-type doping of graphene is often hindered by the ener-
getic requirements for electron transfer from the dopant to 
the host. [ 11 ]  Metallocenes with low ionization energy (IE) 
are relatively easy to use as effi cient donors. Especially, deca-
methylcobaltocene (DMC) has a low IE of 3.3 eV, and is a pow-
erful reductant that can n-dope a wide range of host materials 
including copper phthalocyanine (CuPc) [ 11 ]  and pentacene [ 12 ]  by 
coevaporation. The DMC molecule has abundant π-electrons 
that could strongly interact with and stably adhere to graphene 
lattices, and may thereby induce a distinct and stable doping 
effect. However, DMC doping of graphene has not yet been 
investigated experimentally. Experimental evidence is thus valu-
able to reveal possible doping effect of DMC on CVD-grown 
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 Figure 1.    Schematic of the DMC molecules residing on the single- and 
double-layer graphene mixture.
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donating groups that lead to formation of n-doped graphene 
and carbon nanotubes. [ 16,17 ]  The intensity ratio  I  2D / I  G  of the 2D 
and G bands reveals the number of stacked graphene layers. [ 16 ]  
After annealing, our CVD-grown graphene showed an average 
 I  2D / I  G  ≈ 1.6, which confi rmed that it was a mixture of single 
layers ( I  2D / I  G  > 2.3) and double layers ( I  2D / I  G  ≈ 1). The color var-
iation in the Raman mapping of the annealed graphene repre-
sented different  I  2D / I  G  ratios at different spots, which confi rmed 
the coexistence of the single- (52%) and double-layer (48%) 
graphene (Supporting Information, SI-2-1). The value of  I  2D / I  G  
decreases with the degree of n-type doping, [ 9 ]  and that of  I  2D / I  G  
has a strong dependence on the doping level. [ 14,18 ]  In the Raman 
mappings of graphene (Figure  2 b) the color change indicated 
that  I  2D / I  G  decreased as [DMC] increased; this change indicates 
that n-doping effect increased with [DMC]. The low intensity 
ratio  I  D / I  G  (<0.1) of the D and G bands (Supporting Informa-
tion, SI-2-2) suggests that the graphene sheets contained few 
defects and that the doping did not cause signifi cant damage.   

 Two-dimensional potential maps of a 1.2 × 1.2 mm area were 
recorded using a Kelvin Probe apparatus in air ( Figure    3  a).  φ  
decreased as [DMC] increased; this suggests that n-type doping 
increased with [DMC]. Interestingly, the difference in  φ  from 
the Kelvin probe tip decreased quasilinearly as log[DMC] 
increased (Figure  3 b). The two-dimensional potential map also 

shows the uniformity of doping. The fl uctuation in  φ  was 0.011, 
0.011, 0.065, 0.075, and 0.070 eV for annealed (0%)-, 0.01%-, 
0.05%-, 0.1%-, and 0.5%-DMC-doped graphene, respectively. 
The negligible variations in  φ  imply uniform doping of the 
surfaces.  

 Ultraviolet photoelectron spectra (at the secondary electron 
emission region) of the annealed and doped graphene were 
compared (Figure  3 c). Because the onset of secondary electron 
emission corresponds to the Fermi level, the doping type and 
degree can be derived from  φ , which is calculated as

   φ ν= − −| |sech E EF   (1) 

 where  hν  = 21.2 eV (He I source),  E  sec  is the energy at which 
secondary emission begins, and  E F   is the Fermi edge (22.0 eV 
for the valence band spectrum). The annealed graphene had 
 φ  = 4.40 eV, which is quite similar to that of recent reports. [ 2,19 ]  
The graphene doped with 0.01%, 0.05%, 0.1%, and 0.5% 
DMC solutions had  φ  = 4.3, 4.0, 3.85, and 3.53 eV, respectively. 
These values decreased quasilinearly as log[DMC] increased 
(Figure  3 b, black line), in accordance with the Kelvin probe 
results (Figure  3 b, magenta line); this similarity suggests that 
the doping effect can be controlled by adjusting [DMC] in the 
solution. 

 In Equation  ( 1),    φ  is related directly to  E F  , but the dopant 
solution concentration  C  is related indirectly to  E F   via the 
number of ionized donors  N + .  Therefore, the dependence of 
 φ  on  C  for n-doped single-layer graphene can be understood 
through the relationship between  C  and the dimensionless 
Fermi level ε = /FE kT, where  k  is the Boltzmann constant, and 
 T  is the absolute temperature. We obtain (Supporting Informa-
tion, SI-3) the following relationship
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the undoped graphene at  T,  [ 20 ]   C  is abbreviation for [DMC], h̄  
is the reduced Plank constant, and  ν F   is the Fermi velocity of 
graphene charge carriers.  u  is dimensionless energy  u  =  E/kT.   
ξ ( ε ) accounts for the dependence of the doped graphene elec-
tron concentration on  ε . The asymptotic behavior of  N  + ( C ) varies 
with  ε . i) When  ε  << 1, i.e.,  C  is relatively low or  T  is relatively 
high,  ξ ( ε ) is roughly an exponential function of  ε . This form 
coincides with that of the semiconductors having an energy 
gap, which nevertheless holds throughout all regimes. Due to 
this coincidence,  N  + ( C ) is approximately a linear function of  ε  
in this regime regardless of the energy gap, substituting the 
Taylor expansion of  ξ ( ε ) around  ε =  0 where  N  + ( C ) = 0 into 
Equation  ( 2)  . ii) When  ε  >> 1, i.e.,  C  is relatively high or  T  is rel-
atively low,  ξ ( ε ) of the Dirac cone has a parabolic dependence on 
 ε . In turn, Equation  ( 2)   determines a parabolic dependence on  ε  
for  N  + ( C ). However, for the gapped dispersion, its exponential 
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 Figure 2.    a) Raman spectra of the annealed graphene and the graphene 
doped with 0.01%, 0.05%, 0.1%, and 0.5% DMC, respectively. b) Map-
pings of the 2D/G band intensity ratios in a 50 × 50 µm area of the 
annealed and 0.01%-, 0.05%-, 0.1%-, and 0.5%-DMC-doped graphene.
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dependence on  ε  for  ξ ( ε ) results in an exponential dependence 
on  ε  for  N  + ( C ). (Supporting Information, SI-4 schematically 
depicts the cause of such asymptotic behaviors of  ξ ( ε )). 

 The dependence of  N  + ( C ) on  ε  can be interpreted in terms 
of  C . i) When the donor is at a shallow level, it is ≈100% ion-
ized at room temperature. Therefore,  C  has the same depend-
ence on  ε  as  N  + ( C ) does. ii) When the donor is at a deep 
level, which is the case studied in this work,  C  is equal to an 
exponential function of  ε  multiplied by N  + ( C ). Thus, only for 
gapped dispersion,  φ  has an overall linear dependence on the 
logarithm of the doping density, log( C ), when  ε  >> 1. Because 
the experimental  ε  resides in a crossover regime of 1–32, [ 21 ]  
the obtained quasilinear decrease in  φ  as log[DMC] increases 
suggests that the energy band gap opened. This opening is 
most likely induced by doping on the double-layer part of the 
measured sample, [ 4,13,22 ]  and implies that the signal from the 
double-layer graphene dominates in the mixture of single- and 
double-layer graphene. Furthermore, from the above analysis 
we propose a criterion to judge whether the donor is at shallow 
level or at deep level by using the plot of  φ  versus [DMC] in 
the  ε  �1 regime: if the plot is linear, the donor is at a shallow 
level; otherwise, it is at a deep level. The electronic band struc-
tures of the single- and double-layer fractions in the graphene 
mixture before and after doping is depicted (Supporting Infor-
mation, SI-5). Unlike the single-layer fraction (Figure  3 d,e), 
the undoped double-layer graphene fraction has two touching 

parabolic bands (Figure  3 f). However, the doping on the top 
layer causes the shift in electrochemical potential between the 
two layers, which breaks the inversion symmetry of graphene 
and opens a band gap (Figure  3 g). [ 4 ]   

 To examine the doping effect on electrical transport prop-
erties, bottom-gate, top-contact GNRFETs were fabricated [ 23 ]  
then n-doped using DMC ( Figure    4  a,b). The parallel e-NWs 
(Figure  4 c) were drawn on a CVD-grown graphene sheet by 
using our home-built e-nanowire printer [ 24 ]  to serve as etch 
masks against the oxygen plasma. Au electrodes were patterned 
on the e-NWs through a shadow mask. The unprotected region 
in the graphene sheet was then etched away using oxygen 
plasma to leave GNRs beneath the e-NWs (Figure  4 d). [ 25 ]  The 
e-NWs were removed by brief sonication in chloroform. The 
n-type dopant DMC was then spin-coated on the GNRs. 

 The transfer and output characteristics were recorded for 
GNRFETs based on annealed graphene or on graphene doped 
using [DMC] = 0.01%, 0.05%, 0.1% or 0.5% (Figure  4 e and Sup-
porting Information, SI-5). The GNRFET made with annealed 
GNR showed p-type behavior in air [ 26 ]  with a positive Dirac 
point at gate voltage  V  G  = 38 V, which is consistent with the 
Raman spectra results and is probably due to adsorbed mois-
ture or oxygen, PMMA residue, or defects introduced during 
device fabrication. [ 27,28 ]  In the n-type graphene formed by 
n-doping with 0.05 wt% DMC solution, the Dirac point shifted 
negatively to  V  G  = −25 V. Stronger n-type doping with 0.1 wt% 
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 Figure 3.    a) Kelvin-probe mapping on a 50 × 50 µm area of the annealed, 0.01%-, 0.05%-, 0.1%-, and 0.5%-DMC-doped graphene, respectively. (b) Work 
function (from UPS) and the work function difference from the tip (Kelvin probe) versus DMC solution concentration. c) UPS spectra of the annealed, 
0.01%-, 0.05%-, 0.1%-, and 0.5%-DMC-doped graphene, respectively. The electronic band structures of (d) undoped and (e) n-doped single-layer frac-
tion, (f) undoped, and (g) n-doped double-layer fraction of the CVD-grown graphene mixture.
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DMC solution further shifted the Dirac point negatively to  V  G  
= −116 V. Doping with 0.5 wt% DMC solution shifted the Dirac 
point out of the tested range of  V  G . The strong n-type doping 
effect confi rmed theoretical predictions: [ 13 ]  the transferred elec-
tron charge was tightly localized because of the good adhesion 
between the aromatic rings in DMC and graphene. This is con-
sistent with the Raman, UPS, and Kelvin probe measurements. 

 The hole mobility  µ  h  and electron mobility  µ  e  of each device 
were extracted in the linear regions of the transfer curves 
(Figure  4 e). [ 29 ]  The annealed graphene had  µ  h  = 1450 cm 2  V −1  s −1  
and  µ  e  = 600 cm 2  V −1  s −1 . The 0.05%-DMC-doped GNRFET had 
a reduced  µ  h  of ≈940 cm 2  V −1  s −1  and a signifi cantly increased 
 µ  e  of ≈1050 cm 2  V −1  s −1 . The simultaneous decrease in  µ  h  and 
increase in  µ  e  is consistent with a recent report on chemical 
transfer n-type doping. [ 30 ]  We estimate the band gap using the 
on/off characteristics, E E E kT q I Ig g gΔ = − = (2 / ) ln( / )0

off
0

off , [ 31 ]  
where  E g  ,  q , and  I  off  are band gap, electron charge, and off 

current, respectively. The super note refers to the undoped 
sample. The estimated band gaps are 7.5 and 11.6 meV for 
0.05% and 0.1% DMC doped samples. 

 In summary, we provide experimental evidence and theo-
retical discussions to reveal the doping effect of DMC on a 
CVD-grown single- and double-layer graphene mixture. The 
strong n-type doping shifted the Dirac point substantially in the 
negative direction and reduced the  φ  of graphene.  φ  decreased 
quasilinearly as log[DMC] increased; this relationship could be 
very useful in tuning the electrical properties of graphene. A 
possible role of single- and double-layer fractions in the overall 
characteristics of the CVD-grown graphene suggests band 
gap opening as the cause of the established relationship. This 
suggests that the double-layer fraction had a dominant infl u-
ence on the Fermi level of our CVD-grown graphene. Scalable 
site- and alignment-controlled graphene nanoribbons doped 
with the solution-processed dopant DMC were produced on 
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 Figure 4.    a) Schematic of the fabrication process for a large-scale, n-type-doped GNRFET array, including graphene transfer, e-NW printing, electrode 
patterning, oxygen plasma treatment, nanowire removal, formation of the fi nal GNRFET array, and spin-coating of the n-type dopant DMC. b) Array 
of 144 GNRFET devices fabricated on a 4-in. silicon wafer. c) e-NW alignments including parallel lines at pitches of 50 µm. d) AFM image of a typical 
GNR. e) Typical transfer characteristics of FETs based on annealed and 0.01%-, 0.05%-, 0.1%-, or 0.5%-DMC-doped graphene.
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a wafer scale using e-NW lithography.  µ  e  of 1050 cm 2  V −1  s −1  
was obtained for a 0.05%-DMC-doped GNRFET. We envision 
that the doping approach and the established local-quasilinear 
relationship have signifi cance on the broad application of CVD-
grown graphene in future nanoelectronics.  
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