
PROGRESS REPORT

1903558 (1 of 32) © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

www.advmat.de

Flexible Neuromorphic Electronics for Computing, 
Soft Robotics, and Neuroprosthetics

Hea-Lim Park, Yeongjun Lee, Naryung Kim, Dae-Gyo Seo, Gyeong-Tak Go, and Tae-Woo Lee*

DOI: 10.1002/adma.201903558

and the challenges of the von Neumann 
bottleneck.[1] For information processing, 
classical von Neumann-based com-
puting systems depend on centralized 
and sequential operations with a clock 
cycle, while biological nervous systems 
are based on distributed, parallel, and 
event-driven operations.[2,3] As a solution 
for efficient processing of large quanti-
ties of complex data, the concept of the 
neuromorphic electronics which emu-
late the functions and the information 
processing of biological nervous systems 
has emerged.[4,5] Synapses in such sys-
tems combine processing and memory, so 
they avoid the von Neumann bottleneck,[6] 
and can modulate information flow, data 
processing, and memory function by 
changing the synaptic weight.[7,8] Thus, 
implementation of synaptic behaviors in 
neuromorphic electronics presents a next-
generation computing paradigm.

The biological nervous systems in ver-
tebrates are largely divided into the central 
nervous system (CNS, i.e., the brain 
and the spinal cord) and the peripheral 
nervous system (PNS, i.e., sensory nerves 

and motor nerves).[9] The CNS performs computing, learning, 
and memorizing activities, and manages the activity of the body 
in response to information received from the PNS. The PNS 
perceives and responds to stimuli such as light, sound, pres-
sure, and chemicals, and relays this information between the 
CNS and the rest of the body.

Neuromorphic electronics that emulate the functions of the 
CNS and the PNS could realize computing, soft robotics, and 
neuroprosthetics (Figure 1). Construction of artificial CNSs 
and PNSs requires development of functional synaptic devices 
in which information processing capability is merged with 
various functions such as detection of stimuli (e.g., light, pres-
sure, chemical analytes) and reaction to environment. Further, 
these artificial synapses need to be integrated on a system level. 
Implementation of artificial nervous systems in prosthetics 
and soft robots requires devices that are mechanically flexible 
and stretchable (Figure 1). Biological bodies are composed of 
many curved surfaces with arbitrary shapes, so mechanical 
flexibility enables integration of artificial nerves with bodies 
such as organs, nervous systems, and skins, and this inte-
gration guarantees signal transfer.[10,11] Movement of a body 
involves both bending and stretching forces.[12] For example, 
knees undergo up to 55% of stretching during movement.[13] 

Flexible neuromorphic electronics that emulate biological neuronal systems 
constitute a promising candidate for next-generation wearable computing, 
soft robotics, and neuroprosthetics. For realization, with the achievement 
of simple synaptic behaviors in a single device, the construction of artificial 
synapses with various functions of sensing and responding and integrated 
systems to mimic complicated computing, sensing, and responding in 
biological systems is a prerequisite. Artificial synapses that have learning 
ability can perceive and react to events in the real world; these abilities 
expand the neuromorphic applications toward health monitoring and 
cybernetic devices in the future Internet of Things. To demonstrate the 
flexible neuromorphic systems successfully, it is essential to develop 
artificial synapses and nerves replicating the functionalities of the biological 
counterparts and satisfying the requirements for constructing the elements 
and the integrated systems such as flexibility, low power consumption, 
high-density integration, and biocompatibility. Here, the progress of flexible 
neuromorphic electronics is addressed, from basic backgrounds including 
synaptic characteristics, device structures, and mechanisms of artificial 
synapses and nerves, to applications for computing, soft robotics, and 
neuroprosthetics. Finally, future research directions toward wearable artificial 
neuromorphic systems are suggested for this emerging area.

Neuromorphic Electronics

Dr. H.-L. Park, Dr. Y. Lee, N. Kim, D.-G. Seo, G.-T. Go, Prof. T.-W. Lee
Department of Materials Science and Engineering
Seoul National University
1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
E-mail: twlees@snu.ac.kr, taewlees@gmail.com
Dr. Y. Lee, Prof. T.-W. Lee
BK21 PLUS SNU Materials Division for Educating Creative Global 
Leaders
Seoul National University
1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
Prof. T.-W. Lee
Institute of Engineering Research  
Research Institute of Advanced Materials
Nano Systems Institute (NSI)
Seoul National University
1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea

The ORCID identification number(s) for the author(s) of this article 
can be found under https://doi.org/10.1002/adma.201903558.

1. Introduction

With the spread of Internet of Things (IoT) and artificial intel-
ligence (AI), dataset sizes have exploded, facing the limitations 
in energy efficiency with approaching the end of Moore’s law 
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To emulate biological movement closely, devices must allow 
movement of the joints that is constrained only as desired.[14–16] 
With the rapidly growing needs toward wearable and implant-
able electronics, the development of flexible and stretchable 
neuromorphic electronics that has been focused on health 
monitoring can be extended to robots, exoskeletons, cyber-
netic devices, brain–computer interfaces, and transmission of 
sensorimotor neural signals. Despite the importance of flexible 
neuromorphic electronics, the direction and goals for research 
have not been sufficiently discussed.

Here, we review recent progress in development of flexible 
neuromorphic electronics, and provide guidelines for future 
research toward development of brain-inspired computing, 
soft robotics, and neuroprosthetics. First, we present basic 
background about biological synapses and various synaptic 
characteristics which should be emulated by artificial synapses. 
Second, together with device structures and mechanisms of 
artificial synapses, we will cover the requirements of flexible 
devices for actual applications including flexibility, low power 
consumption, high-density integration, and biocompatibility. 
Then, we will present examples of applications for brain-
inspired computing, soft robotics, and neuroprosthetics at 
a unit cell level and at a system level. Finally, we will suggest 
future research directions toward wearable artificial neuromor-
phic electronics.

2. Biological Synapses and Synaptic Properties

The human brain is a massively parallel computing structure 
that processes input information by synaptic transmission and 

consumes only around 1–10 fJ per synaptic event.[17,18] The 
neural network is composed of ≈1012 neurons and ≈1015 syn-
apses and propagates neural signals in the CNS and the PNS. 
The PNS consists of sensory neurons that send information to 
the CNS for processing, and that activate motor effectors.

Synapses are categorized into electrical synapses and 
chemical synapses. Electrical synapses transmit signals bidi-
rectionally at gap junctions that are electrically coupled across 
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Figure 1. Flexible neuromorphic electronics for neuromorphic computing, humanoid robotics, and neuroprosthetics. These applications require 
functionality, high-density integration, low power consumption, flexibility, and biocompatibility. Artificial parts of (A′) and (B′) indicate pressure sensor 
and artificial synapse, respectively, which correspond to biological counterparts’ mechanoreceptor under skin (A) and biological synapses (B).
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a narrow synapse (≈3 nm).[19] Chemical synapses transfer 
information when a presynaptic neuron releases neuro-
transmitters into a synaptic cleft with a gap of 20–50 nm 
that separates the presynaptic neuron from a postsynaptic 
neuron (Figure 2a,b). The synaptic strength of a chemical 
synapse is delicately controlled by the relative importance of 
input information, so chemical synapses mainly contribute 
to learning or memorizing functions.[20–22] When the elec-
tric signals of an action potential arrive at the axon terminal 
of presynaptic neuronal membrane (Figure 2b, ①), then Ca2+ 
ion channels are opened and Ca2+ ions rush into the neu-
ronal membrane ②. The influx of Ca2+ ions makes synaptic 
vesicles migrate to the terminal ③, where they release neu-
rotransmitters from synaptic vesicles ④.[23] Then, the neuro-
transmitters bind to receptors on the postsynaptic neuronal 
membrane (soma or dendrite), and thereby trigger opening 
of ion channels ⑤. With cell membranes, the concentration  
gradients of several ions, mainly K+, Na+, and Cl−, are sepa-
rately distributed.[22–24] K+ ions are more concentrated within 
neurons, whereas the Na+ and Cl− are more concentrated in the 
extracellular medium; this gradient of chemical concentration 
induces formation of a potential difference across the neural 
membrane.[25] The intracellular potential is usually negative  

relative to the extracellular medium, and the membrane 
potential is ≈−70 mV, which is called the resting potential.[25]

The membrane potential changes in response to activation 
of ion channels by various neurotransmitters, and synapses 
can either be excitatory or inhibitory by the combination of 
neurotransmitters and ion channels. In excitatory synapses, 
the membrane potential becomes depolarized by the influx of 
Na+ ions through activated Na+ ion channels; this change in 
potential is called the excitatory postsynaptic potential (EPSP) 
(Figure 2c, blue lines).[26] In inhibitory synapses, the mem-
brane potential becomes negatively hyperpolarized by an influx 
of Cl− ions through Cl− ion channels, and causes an inhibitory 
postsynaptic potential (IPSP) (Figure 2c, red lines).[26] Multiple 
postsynaptic potentials (PSPs) are integrated at the axon hillock 
which is the initial portion of axon from the soma (Figure 2c(i)). 
When the sum of EPSP and IPSP exceeds a threshold, the neu-
ronal membrane becomes positively charged, and generates 
a new action potential toward the axon terminal which can 
transmit the signal to another cell (Figure 2c(ii)).[22,27] The syn-
aptic integration of signals can be spatial or temporal.[28] Spatial 
summation integrates PSPs from many synapses on the same 
neuron simultaneously. Temporal summation integrates suc-
cessive PSPs that occur within 1–15 ms at the same synapse.[29]
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Figure 2. a) Schematic illustration of neuron structures.[18] b) Structure and components of the chemical synapse.[22] c) Postsynaptic potential summation 
at the axon hillock.[28] Part (i) shows multiple PSPs of EPSP and IPSP added at the axon hillock (signal integration). Part (ii) shows generation of a new 
action potential when the sum of PSPs exceeds a threshold. d) Topological changes of neurons (recruitment of new neurotransmitter receptors on 
Synapse A, and formation of new synapses of Synapse B) by repeated stimulations.[23,38] e) Graphs of long-term plasticity in the hippocampus.[37] Top 
panel shows LTP by high-frequency spikes (usually 100 Hz) and bottom panel demonstrates LTD by low-frequency stimulation (usually less than 1 or 
5 Hz). f) Four types of STDP forms widely emulated by artificial synapses.[46–50]
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Synaptic plasticity is a change in synaptic strength (synaptic 
weight) in response to action potentials; it is an important 
property of neurons that enables learning and memory.[23,30,31] 
It can be classified into short-term plasticity (temporary change 
of synaptic weight) and long-term plasticity (long change of 
synaptic weight); both types can have potentiation (increasing) 
and depression (decreasing) states.[32,33] During potentiation, 
the amplitude of the postsynaptic potential increases; the 
result is an increase in the number of action potentials that 
can be generated by the same number of stimulations. When 
IPSPs counteract EPSPs, depression occurs; the result is an 
increase in the number of stimulations that are required to 
make the same number of action potentials as before. When 
action potentials are repetitive, relatively frequent, or both, they 
cause increase in the quantity of neurotransmitters toward the 
postsynapse membrane, so influx of Ca2+ ions increases in the 
postneuron; the result is short-term potentiation (STP). By 
contrast, weak or infrequent action potentials along the pre-
neuron axons result in short-term depression (STD) of the 
synapses.[34] STP and STD can be represented as paired-pulse 
facilitation (PPF) and paired-pulse depression (PPD), respec-
tively.[35] During STP, increased Ca2+ influx in the postneurons 
leads to an increase in the receptor concentration and more 
neurotransmitters can be received by the increased receptors. 
Thus, each PSP becomes higher than the previous PSP when 
the postneuron receives the same number of chemical signals; 
this response is called PPF.[34,36] PPD is caused from reduced 
influx of Ca2+ ions (weak or infrequent action potentials), i.e., 
STD. The receptor concentration decreases, so each PSP is 
weaker than the previous one on the postneuron. Repeated 
or frequent stimulations for a long time induce topological 
changes in neurons; these changes can result in conversion 
of short-term plasticity (including STP and STD) to long-term 
plasticity (Figure 2d).[37] When the concentration of Ca2+ ions 
exceeds a threshold, biosignals are triggered, which results in 
synthesis of RNAs that encode proteins to form new synapses. 
This results in a persistent strengthening of synapses which is 
called long-term potentiation (LTP) (Figure 2e, top panel).[37,38] 
By contrast, when the frequency of action potentials is low, 
the number of synapses and receptors decreases; this phe-
nomenon is called long-term depression (LTD) (Figure 2e, 
bottom panel).[37,39] STP is involved in various computations, 
working memory, and short-term memory (seconds to hours); 
LTP is involved in learning and long-term memory (hours to 
months).

The spike rate and the timing between paired spikes have 
been reported as the main factors that induce modification of 
synaptic weight in biological neural networks (Figure 2f). Syn-
aptic information is encoded as spike-based action potentials 
with the same amplitude, so the plasticity is mainly affected 
by the frequency of spikes; this effect is defined as spike rate–
dependent plasticity (SRDP).[40–42] To stimulate neurons, many 
researchers have applied AC signals or pulse trains to observe 
the responses at various frequencies.[43] Markram found that 
EPSPs depend on the frequency at neocortical pyramidal 
neurons[40] and O’Dell and Kandel reported that low-fre-
quency stimulation (5 Hz) induces depression before and 
after LTP states at the first region (CA1) in the hippocampal 
circuit of hippocampal neurons in adult pigs.[41] Dudek and 

Bear showed that 3 Hz trains triggered depression but 10 Hz 
trains did not have any significant change and 50 Hz trains 
generated potentiation in the CA1 of adult rat hippocampal 
neurons.[42]

The temporal relationship between pre- and postsynaptic 
firing can also modify synaptic weight; this effect may be the 
basic principle of Hebbian learning.[44] Spike timing–dependent 
plasticity (STDP) is the phenomenon by which time interval 
between two spikes and their temporal order affect the synaptic 
weight. STDP has been regarded as a learning rule in the brain, 
and has been examined by varying the spike time difference 
ΔTpre-post = tpre − tpost where tpre and tpost are arrival times of pre- 
and postsynaptic spikes, respectively.[45] The first characteriza-
tion of STDP was investigated by Bi and Poo through a pair 
of pre- and postsynaptic potentials to stimulate hippocampal 
neurons in rats; the results demonstrated that the magnitude 
of PSPs could be controlled by adjusting the timing between 
two spikes.[46] Postsynaptic spikes that were triggered after 
presynaptic spikes within 20 ms (ΔTpre-post < 0) led to potentia-
tion, whereas postsynaptic spiking within 20 ms before presyn-
aptic spikes (ΔTpre-post > 0) induced depression. The magnitude 
of LTP and LTD increased, when ΔTpre-post approached 0. Four 
types of STDP have been widely emulated by artificial synapses 
(Figure 2f).[45–50]

3. Flexible Artificial Synapses

3.1. Emulation of Biological Behaviors

Many studies have attempted to emulate a brain’s synaptic plas-
ticity and functions such as memory, learning, and cognition. 
Artificial synapses modulate the conductances of active layers; 
this process is analogous to modulating synaptic weights of 
neurons in biological systems. In artificial synapses, the con-
ductance is generally measured from the current between 
two electrodes (bottom and top electrodes for two-terminal 
(2-T) devices and source (S) and drain (D) electrodes for 
three-terminal (3-T) devices). Artificial synapses use electrical 
voltage pulses to simulate an action potentials in neurons. 
Application of one brief voltage pulse stimulates a momen-
tary increase in current (excitatory postsynaptic currents, 
EPSCs) which then decays to the initial current in a short time 
(within a few seconds); this phenomenon is analogous to STP 
(Figure 3a).[9,51–54] On the contrary, application of spikes with 
sufficiently high amplitude, high frequency, or large number, 
stimulates a long-term increase in currents (hours or longer); 
this phenomenon is analogous to LTP (Figure 3b).[7,55,56]

STP and STD affect synaptic weights in ways that emu-
late the facilitation and depression properties of biological 
synapses.[7] STP and STD are represented by PPF and PPD, 
respectively, which are induced by two consecutive spikes that 
occur separated by a time interval Δt. When decrease in Δt 
increases the amplification of the second postsynaptic current, 
the response is PPF, whereas when decrease in Δt decreases 
the second postsynaptic current, the response is PPD. PPF and 
PPD are usually defined as 100 × A2/A1, where A1 and A2 are 
the peaks of the first and the second synaptic currents, respec-
tively (Figure 3c).[57,58] In PPF, the first spike increases the 
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postsynaptic current (EPSC), then, before the increased current 
has decayed completely to the original state, the second spike is 
applied; it induces a higher current than the first spike. PPD is 
the inverse reaction, in which the second voltage spikes reduces 
the current that is induced by the first spike. The intensity of 
facilitation or depression depends on Δt.

In biological synapses, ΔTpre-post finely modulates synaptic 
weights (STDP). This behavior can be emulated in artificial 
synapses, when their synaptic weights can be controlled by 
adjusting ΔTpre-post. Artificial synapses emulate diverse forms of 
STDP that occur in various parts of a brain (e.g., hippocampus, 
neocortex, visual cortex). One of the common STDP forms is the 
Hebbian STDP behavior shown as the following equation[59–62]
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where w is the synaptic weight, and A and B are learning rates. 
In Hebbian STDP, the synaptic weight is modulated by the time 
interval and the temporal order between pre- and postsynaptic 

spikes (ΔTpre-post). w increases when the presynaptic spike fires a 
short time before the postsynaptic spike (ΔTpre-post ≤ 0), whereas 
w decreases when the presynaptic spike fires briefly after the 
postsynaptic spike (ΔTpre-post > 0). Artificial synapses have 
demonstrated Hebbian STDP and other forms of STDP such 
as anti-Hebbian STDP, symmetrical STDP, and visual STDP 
(Figure 3d).[63,64] The STDP learning rule suggests that learning 
is dependent on the temporal relationship between two spikes 
that have fixed amplitude. However, to demonstrate various 
STDP behaviors, many studies have focused on manipulating 
the spike forms (Figure 3d). These approaches inevitably 
require complex circuits to generate various spike forms with 
various ΔTpre-post, so the actual applications are limited, and 
effort should be devoted to achieve emulation of STDP learning 
rules in which ΔTpre-post alone modulates synaptic weight.

In biological systems, synaptic weights can be modulated by 
spiking rate. This is called SRDP or spike frequency–dependent 
plasticity. In SRDP, strengthening or weakening of synaptic 
weights, i.e., gain in postsynaptic current (PSC), is widely 
defined as An/A1, where An and A1 are the synaptic weights of 
the nth peak and the first, respectively, and this parameter relies 
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Figure 3. a–c) Graphs of EPSC (a), LTP (b), and PPF and PPD index over various spike time intervals (c), and d) pre- and postsynaptic spike forms 
(left) and the corresponding STDP forms (right) in artificial synapses. a,b) Reproduced with permission.[55] Copyright 2016, The Authors, published 
by American Association for the Advancement of Science. Reprinted/adapted from ref. [55]. © The Authors, some rights reserved; exclusive licensee 
American Association for the Advancement of Science. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC) 
http://creativecommons.org/licenses/by-nc/4.0/. c) Reproduced with permission.[35] Copyright 2017, American Institute of Physics. d) Reproduced 
with permission.[64] Copyright 2018, Wiley-VCH.

http://creativecommons.org/licenses/by-nc/4.0/
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on spike rate.[65,66] SRDP in artificial synapses shows filtering 
behaviors (Figure 4a) which resemble biological behavior; 
SRDP is related to the initial probability of neurotransmitter 
release.[65–68] The gain of the tenth PSC increased from 1.03 
to 3.5 as the frequency of spikes ranged from 9 to 95 Hz; this 
response is similar to high-pass filtering.[65] Bidirectional modi-
fication of synaptic weights by the spike rate (i.e., potentiation 
by high-frequency spikes and depression by low-frequency 
spikes) has been mimicked only by artificial synapses based on 
rigid substrates (Figure 4b);[67,69] flexible devices have shown 
only unidirectional modulation of synaptic weights by the spike 
rate. SRDP behaviors constitute important learning rules for 
updating synaptic weights in unsupervised learning. Especially, 
bidirectional modulation of synaptic weights by spiking rates is 
related to Bienenstock, Cooper, and Munro learning rules, in 
which a sliding threshold θ of presynaptic firing rates f deter-
mines whether the response is depression (f <  θ) or poten-
tiation (f >  θ), and controls synaptic strength.[70] Bidirectional 
modulation is a candidate for learning rules in neuromorphic 

computing.[71] Thus, flexible devices that have bidirectional 
modulation of synaptic weights in response to the spike rate are 
required to be developed. Synaptic weights can also be modu-
lated by the duration or number of spikes; these phenomena 
are known as spike duration–dependent plasticity (SDDP) and 
spike number–dependent plasticity (SNDP), respectively.[51,55]

In artificial synapses, memory states are divided into short-
term memory (STM) and long-term memory (LTM) which 
emulate the multistore model of human memory (Figure 4c).[72] 
After stimulation by a small number of spikes at low frequency, 
the changed synaptic weights decay gradually rather than being 
retained for a long time; this is STM.[72] STM can be con-
verted to LTM with nonvolatile characteristics after numerous 
rehearsals at high frequency.[72] The memorized synaptic 
weight decays based on a forgetting function called the Ebbing-
haus forgetting curve[72]

I I C
t

t exp0 τ
= + ⋅ −



  (2)
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Figure 4. a,b) Graphs showing SRDP (a), bidirectional modification of synaptic weights with various spike rates (b). a) Reproduced with permission.[65] 
Copyright 2017, Wiley-VCH. b) Reproduced with permission.[69] Copyright 2015, Wiley-VCH. c) Memorization model of human memory by Atkinson. 
d) Decay of synaptic weights with various spike number (N = 5, 20, 40, 60, 80, and 100). Black lines indicate fitting graphs based on exponential decay 
functions. d) Reproduced with permission.[54] Copyright 2018, The Royal Society of Chemistry. e) Fault tolerant ability of STM–LTM transition. Blue 
arrows indicate intentional input signals and green arrows indicate incorrect input signals. Reproduced under the terms of the Creative Commons 
Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).[73] Copyright 2017, The Authors, published by Springer Nature. 
f) Curves of learning–forgetting–relearning behaviors. Reproduced with permission.[75] Copyright 2017, American Chemical Society.

https://creativecommons.org/licenses/by/4.0/
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where I0 is the initial state value, It is the state value after 
time t, C is a constant value, and τ is the relaxation time con-
stant. The synaptic weights decay exponentially over time 
(Figure 4d); the trend agrees well with the decay function of 
memory in psychology.[54] Application of a small number of 
pulses (N = 5, 20, 40) to the devices elicited STM character-
istics in which synaptic weights decayed rapidly. By contrast, 
application of a large number of pulses (N = 60, 80, 100), the 
elevated synaptic weights were more likely to be retained than 
when N was small; this result emulates LTM. These behaviors 
imitated the consolidation of memory by frequently repeated 
events.

The transition of STM to LTM has been exploited to demon-
strate the fault tolerance of a flexible crossbar array (Figure 4e). 
The first input signal was given to program the image of an 
“H” (Figure 4e, downward blue arrows).[73] During the repeated 
input to train the “H” image, incorrect input signals (Figure 4e, 
green arrows) were unintentionally applied. After training, only 
the correct image of “H” was memorized as LTM, because the 
inputs had been repeated frequently, whereas the unintentional 
signals remained as STM and finally disappeared, because 
these inputs had been intermittent. The storage of only desired 
information as LTM demonstrated the fault tolerance of the 
flexible artificial synapses.

Learning–forgetting–relearning behavior is another inter-
esting behavior of biological brains, and has been emulated 
using flexible devices.[54,74,75] A human brain relearns a for-
gotten memory faster than a new memory; this ability has 
“time-saving” effects.[76] In these studies, the amount of stim-
ulation to attain the same synaptic weight was lower during 
relearning than during the first learning process. This result 
implies that memorization affects future learning processes 
and saves time. During the first learning process, 50 con-
secutive pulses were applied to get a certain level of synaptic 
weight, which was then allowed to decay spontaneously (i.e., 
to forget) over time. During the relearning process, only 20 
consecutive pulses were required to obtain the specific syn-
aptic weight that had been attained during the first learning 
process (Figure 4f). This phenomenon showed that forgotten 
information can be relearned more easily than new informa-
tion in artificial synapses, and this ability is similar to that of a 
biological brain.

3.2. Mechanisms

Artificial synapses have been developed based on various 
structures, materials, and mechanisms to mimic the structure 
and synaptic plasticity of biological synapses. Conventional 
memory mechanisms (e.g., conductive filament,[54,75,77–86] 
Schottky junction,[87–89] charge trapping,[82,90–95] phase 
change,[75,96–98] ferroelectricity,[99–107] ion migration[4,51,74,108]) 
have been extended to the implementation of synaptic prop-
erties. Artificial synapses, i.e., transistors that exploit electro-
chemical reactions have also been developed.[7,52,55,57,63,66,109–119] 
Given the existence of flexible memory, various studies will 
likely be performed on flexible artificial synapses. This sec-
tion provides details of the operational mechanisms of 2-T and 
3-T devices.

3.2.1. Two-Terminal Devices

A 2-T artificial synapse realizes a synaptic response by changing 
the conductivity (synaptic plasticity) between two electrodes, 
with one electrode used as a preneuron to apply a voltage pulse 
(action potential) and the other electrode as a postneuron to 
relay the current. Simple structure and operation principles of 
2-T synapses are suitable for production of high-density elec-
tronic devices such as crossbar arrays. 2-T flexible synaptic 
devices have been composed of a variety of materials, and have 
achieved a range of characteristics such as energy consumption 
and various synaptic characteristics (Table 1).

Metallic Filament: Resistive random access memory (ReRAM) 
has an insulating layer sandwiched between top and bottom 
electrodes which contain active metals (e.g., Ag, Cu). This 
architecture has been studied for a long time as a next-genera-
tion memory, and has been recently tested for implementation 
of synaptic characteristics (Figure 5a).[54,77–79,82,85,86] When a 
voltage is applied to the electrode, the active metal oxidizes into 
metal cations that the electric field drives into the intermediate 
layer. These ions are then reduced by meeting the electrons or 
anions, and form conductive particles. Sufficient oxidation, dif-
fusion, and reduction of metal can eventually provide sufficient 
metal particles to form a conductive filament between the anode 
and the cathode. When the filament forms, the device assumes 
a low-resistance state (LRS), in which the current rapidly 
increases (ON state). The filament is generally broken by spon-
taneous diffusion, Joule heating, or ionization of the metallic 
filament, and the device enters a high-resistance state (HRS), in 
which current decreases (OFF state). When the voltage is con-
tinuously applied during programming, the filaments thicken 
and the conductivity increases.[78] The conductivity can be con-
trolled by the voltage pulse to realize a synaptic response. In 
addition, ReRAM-based artificial synapses have been used to 
demonstrate artificial nociceptors (Section 5.2).[78,79,120,121] How-
ever, the current increases rapidly, so the device consumes a 
large amount of energy.

A flexible artificial synapse composed of Ag/carboxymethyl 
ι-carrageenan (CιC)/indium tin oxide (ITO) was operated by 
formation and spontaneous rupture of the Ag filament with 
diffusive dynamics (Figure 5a).[78] Carrageenan is an organic 
solid electrolyte extracted from seaweeds and, here, CιC was 
modified to increase its ionic conductivity.[78] During a forward 
voltage sweep, the current abruptly increased (i.e., the device 
entered the ON state) at a threshold voltage, and returned to 
the HRS during the backward sweep.[78] This forming-free 
threshold switching behavior was also applied to demon-
strate synaptic characteristics with voltage pulses above the 
threshold.[78] The output current of the devices depended on 
the amplitude, interval, and duration of voltage pulses, and the 
unstable Ag filament degraded over time.[78]

Oxygen Vacancy: The height of the Schottky barrier at the 
interface between metal electrode and metal oxide semicon-
ductor is controlled by accumulation of oxygen vacancies that 
are moved by an applied electric field.[87–89] Initially, the metal 
oxide is in a HRS, which is maintained by the energy barrier 
between the metal and the metal oxide. When a voltage is 
applied, the electrical field drives movement of oxygen vacan-
cies in the metal oxide. The energy barrier (Schottky barrier 

Adv. Mater. 2020, 32, 1903558
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or tunnel barrier) at the interface is lowered by the immigrant 
oxygen vacancies, or by formation of conductive filaments, or 
by both the processes, so a LRS is generated. When a voltage is 
applied in the opposite direction, the oxygen vacancies diffuse 
back to the metal oxide from the interface, or the conductive 
filaments rupture, or both the processes occur; these changes 
restore the energy barrier at the interface, and the metal oxide 
returns to the HRS.

In a flexible artificial synapse composed of Pt/WOx/Ti, the 
conductivity (i.e., synaptic weight) was also controlled by the 

voltage pulses; oxygen ion migration reduced the Schottky 
barrier height at Pt/WOx interface, and as a result, various syn-
aptic characteristics were demonstrated.[87] Migrated oxygen 
vacancies also formed conductive filaments in artificial synapse 
composed of Pt/(Na0.5K0.5)NbO3 (NKN)/TiN (Figure 5b).[81]  
The oxygen vacancy filament in the NKN-based artificial syn-
apse contributed to gradual modulation of conductivity with 
consecutive voltage sweeps and pulses.[81]

Charge Trapping: Memory that is based on charge trap-
ping exploits the phenomenon by which charges fill traps 

Adv. Mater. 2020, 32, 1903558

Figure 5. a–c) Examples of two-terminal artificial synapses with working mechanisms of metallic filament (a), oxygen vacancy (b), charge trapping 
(c), phase change (d), ferroelectric dipole alignment (e), and ion migration (f). a) Reproduced with permission.[78] Copyright 2019, The Royal Society 
of Chemistry. b) Reproduced under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/
by/4.0/).[81] Copyright 2017, The Authors, published by Springer Nature. c) Reproduced with permission.[90] Copyright 2018, Wiley-VCH. d) Reproduced 
with permission.[75] Copyright 2017, American Chemical Society. e) Reproduced with permission.[103] Copyright 2018, The Royal Society of Chemistry. 
f) Reproduced with permission.[108] Copyright 2016, Wiley-VCH.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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in insulating layers, and the electron injection mechanism 
changes from Ohmic (ln(I) ∼ Vα, α ≈ 1) to space-charge-lim-
ited-current (SCLC) (α ≈ 2) conduction in which the number 
of injected carriers exceeds the number of thermally generated 
carriers (Figure 5c).[82,90,91] When the metal electrode and the 
insulating layer are in Ohmic contact and the trap-free state is 
maintained, the current is controlled by the space charge. In 
artificial synapses in which charge-trapping nanoparticles (NPs) 
(e.g., Au NP[90] and mica[91]) have been added to the middle 
layer, the voltage caused trapping of charges in the nanomate-
rial, so current flow followed the SCLC conduction mechanism.

In an artificial synapse with Al/polyvinylpyrrolidone–Au 
NPs/ITO, the current slope changed from Ohmic (α = 1.03) 
to SCLC (α = 1.92) conduction as applied voltage increased 
(Figure 5c).[90] The postsynaptic current gradually increased 
as the number and speed of the pulses were increased. The 
device showed long-term memory and learning/forgetting 
characteristics.

Phase Change: Phase-change memory exploits a revers-
ible phase change of materials from amorphous to crystal-
line by Joule heating.[75,96–98] The amorphous state is a HRS, 
and the crystalline state is a LRS. When a current is applied, 
Joule heating causes the temperature to rise to crystallization 
temperature of the material; this is referred to as the “set” 
operation. By contrast, when the temperature is raised to the 
melting point of the substance, then rapidly cooled, the mate-
rials solidify into an amorphous state; this is referred to as the 
“reset” operation.

Phase-change memory has used lignin, which is an organic 
biopolymer. When the applied bias induced Joule heating, the 
initially localized carbon-rich regions transformed to amor-
phous carbon (Figure 5d).[75] As the temperature was increased, 
localized graphitic structures formed and the conductivity 
changed.[75] The heat generated by short and small voltage 
pulses created unstable conductive filaments, which were easily 
broken and exhibited STP characteristics.[75] However, when 
the voltage pulses were applied many times, the conductive  
filament stabilized, so the device exhibited LTP.[75]

Ferroelectricity: Ferroelectric materials have a spontaneously 
polarized dipole moment due to structural asymmetry, even 
when no voltage is applied.[99–103] The alignment of the dipole 
can be controlled by applying an electric field to exploit a polari-
zation–electric field hysteresis loop. In ferroelectric synapses, 
the synaptic weight is modulated by using sequential align-
ment of voltage-controlled dipoles to control the ferroelectric 
tunneling barriers (tunnel resistance).

One inorganic artificial synapse consisted of BaTiO3/
La0.67Sr0.33MnO3 thin film. In it, the junction resistance that 
was caused by the alignment of the dipoles could be controlled 
reversibly by adjusting the polarity, amplitudes, durations, and 
numbers of voltage pulses.[99]

Organic artificial synapses have been developed by using 
films composed of poly(vinylidene fluoridetrifluoroethylene) 
(P(VDF-TrFE)), which is an organic ferroelectric material, 
and poly(9,9-dioctylfluorene) (PFO), with the film sandwiched 
between ITO and CuPc/Au electrodes (Figure 5e).[103] The 
energy-barrier heights at interfaces of PFO/ITO and PFO/
CuPc were gradually controlled with the dipole alignment by 
an external electric field. Synaptic potentiation/depression were 

realized according to the conductance change (synaptic weight) 
of the device.[103]

Ion Migration: Ion migration has been exploited, especially 
in perovskite materials, which have an ABX3 structure where X 
is a halide. Migration of halide ions has low activation energy,  
and induces hysteresis during I–V sweeps. Switching memory 
that exploits this phenomenon with halide ion-vacancy fila-
ments has been developed, and artificial synapses that exploit 
halide-ion migration have been developed. A methylammonium 
(MA) lead bromide perovskite (MAPbBr3) artificial synapse that 
had a conductive polymer thin film to prevent the formation 
of conductive filaments between the anode and cathode, dem-
onstrated synaptic characteristic by using the migration of Br− 
ions in response to a voltage pulse (Figure 5f).[108] The depend-
ence of synaptic characteristics on perovskite structure, and the 
operation mechanism of the device were analyzed by control-
ling the dimensionality of the perovskite layer.[51] A perovskite 
synapse with low-dimensionality film had low driving voltage 
and low postsynaptic current, and therefore showed low energy 
consumption of 0.7 fJ per synaptic event.[51]

3.2.2. Three-Terminal Devices

In a 3-T transistor structure synapse, when a presynaptic 
voltage pulse is applied to the gate electrode, a field-induced 
change in the conductance of the channel between the S/D 
electrodes results in postsynaptic drain current. The 3-T struc-
ture is relatively more complicated than the 2-T structure, but 
3-T devices can implement various brain and body synaptic 
functions by exploiting functional expandability such as mul-
tigated, global-gated,[111] and local-gated structures. 3-T flex-
ible artificial synaptic devices have also been composed of 
a variety of materials, and have achieved a range of synaptic 
characteristics (Table 2).

Charge Tunneling and Trapping: A floating-gated transistor 
in which a conductive floating gate is surrounded by dielec-
tric layers has been extensively studied as a flash memory 
device.[92–94] A voltage applied to the control gate induces 
charge carriers in the semiconductor layer; they pass through 
the tunneling insulator and become trapped in the floating 
gate. These trapped charges in the floating gate cause a change 
in the threshold voltage: the result is a memory effect. An oppo-
site gate voltage releases the charge carriers that are trapped in 
the floating gate; they return through the tunneling insulator to 
their original distribution before trapping. This change causes 
memory erasure.

In one artificial synapse, the charges that a voltage pulse 
induced in a pentacene layer tunneled to a C60 floating gate sur-
rounded by a polymer dielectric layer; this movement could be 
used to control the channel conductance (Figure 6a).[94] Voltage 
pulses stably controlled the synaptic potentiation/depression. 
LTP and learning were demonstrated.[94]

Ferroelectricity: In transistors that use ferroelectric materials 
in the gate insulator, the channel conductance is adjusted by 
using an electric field to control the dipole orientation: the 
result is a memory effect.[104–107] The ferroelectric polarization 
causes a large current hysteresis during the voltage sweeps 
across in I–V transfer curve, so memory switching is achieved.

Adv. Mater. 2020, 32, 1903558
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A 500 nm thick freestanding synaptic transistor composed 
of pentacene channel and PVDF–TrFE ferroelectric dielectric 
realized diverse synaptic properties based on dipole align-
ment depending on the characteristics of the presynaptic 
voltage pulses, and exhibited stable mechanical flexibility 
(Figure 6b).[106]

Ion Migration: In an electrolyte-gated field-effect tran-
sistor, the channel conductance is controlled by adjusting 
the gate voltage to modulate the ion migration in case 
that electrochemical reaction with semiconductor is not 
involved.[66,122–125] Ion migration drives formation of elec-
trically double layers (EDLs) at the interfaces between the 
channel and electrolyte and between the electrolyte and gate 

electrode; the EDL has a high capacitance, so a wide range 
of channel conductance can be achieved by modulating a low 
voltage. Spontaneous redistribution of migrated ions takes a 
certain amount of time; artificial synapses exploit this short 
time delay. Consecutive application of voltage pulses sepa-
rated by a short interval increases the distance that the ions 
move before they reverse and then return to the electrolyte 
medium completely after turning off the pulses. The result 
is an increase in the number of ions that accumulate in the 
EDLs, and a consequent increase in channel conductance. Ion 
redistribution from an EDL after voltage pulses takes <1 s, so 
these devices can have the short-term synaptic properties of 
biological afferent nerves.[110]

Adv. Mater. 2020, 32, 1903558

Figure 6. a–c) Examples of three-terminal artificial synapses with working mechanisms of charge tunneling and trapping (a), ferroelectric dipole 
alignment (b), and electrochemical reactions (c). a) Reproduced with permission.[94] Copyright 2018, Wiley-VCH. b) Reproduced with permission.[106] 
Copyright 2019, ACS. c(i)) Reproduced with permission.[63] Copyright 2018, American Chemical Society. c(ii)) Reproduced with permission.[112] 
Copyright 2017, Springer Nature.
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Electrochemical Reaction: In electrochemical organic tran-
sistor (OECT) structures based on ion-permeable conjugated 
polymer, electrochemical ion doping occurs when the ions of 
the electrolyte penetrate a conjugated polymer.[7,55,63,111] When 
a presynaptic negative voltage pulse was applied to the gate 
electrode in a semiconducting polymer OECT, the anion of 
the electrolyte penetrated into the bulk regions of a semicon-
ducting polymer such as poly(3-hexylthiophene) (P3HT), so the 
conductivity was changed by induction of charges in the semi-
conductor layer (Figure 6c(i)).[55,63] In a conducting-polymer 
OECT, when a presynaptic positive voltage pulse was applied 
to the gate electrode, the cation of the electrolyte permeated 
into a predoped conductive polymer (e.g., poly(3,4-ethylenedi-
oxythiophene):polystyrene sulfonate; PEDOT:PSS) and the PSS 
was dedoped from the PEDOT; as a result, the conductivity was 
gradually decreased.[7,111] In addition, artificial synapses based 
on rechargeable battery structures exploited the electrochem-
ical redox reactions of the anode/cathode during the charging/ 
discharging processes to realize highly stable nonvolatile syn-
aptic responses (Figure 6c(ii)).[112–114] A polycrystalline metal 
oxide (e.g., ZnO) transistor has used a proton (H+)-based 
electrolyte. A presynaptic gate voltage pulse drove migration 
of H+ ions; they accumulated at interfaces between insulator 
and metal oxide, and thereby showed synaptic characteris-
tics.[57,115,126–129] In 2D nanomaterials (e.g., transition metal 
dichalcogenide, graphene) and electrolyte-based artificial syn-
apses, ions were electrochemically intercalated into the layered 
nanomaterials according to the presynaptic gate voltage pulses; 
synaptic responses have been demonstrated.[52,116,117]

3.3. Requirements for Applications

To successfully demonstrate flexible neuromorphic systems, 
the elements and the integrated systems must be flexible, con-
sume low power, be densely integrated, and be biocompatible. 
This section addresses these requirements.

For flexibility, neuromorphic electronics have been fabricated 
on paper substrates,[66,126] Si membrane,[127] and polymer sub-
strates including poly(ethylene naphthalate) (PEN),[85,86,91,130,131] 
polyimide (PI),[64,81,132] poly(ethylene terephthalate)  
(PET),[4,73–75,82,83,110,115,133–137] chitosan membrane,[138] and 
silk.[139] Other components such as semiconductor layers and 
gate insulators have adopted the groups based on 2D mate-
rials,[91,131,135] organic materials,[4,73,74,82,83,91,110,133,136,140,141] metal 
oxide,[64,66,115,127,130,131,138,139,142,143] and perovskites.[80,134,135] Spe-
cifically, artificial synapses themselves can be fabricated in textile 
form for wearable applications.[144]

Some work has been exerted to overcome the brittle and 
fragile characteristics of typical electrode materials such as 
metal and ITO. For example, an artificial synapse composed 
of Al/PI:mica nanosheet composite/ITO/PEN showed severe 
decrease in LRS/HRS ratio under bending cycles, but after 
insertion of PEDOT:PSS layers, the devices showed stable oper-
ation under bending cycles.[91]

Devices that used reduced graphene oxide (rGO) and 
PEDOT:PSS have shown much better mechanical flexibility and 
durability than metal electrodes. When a 2D perovskite-based 
device was fabricated with flexible electrodes, composed of rGO 

and PEDOT:PSS, it showed excellent mechanical durability 
by maintaining initial device electrical characteristics for 1500 
bending cycles to a radius of 5.5 mm,[135] whereas the device 
with conventional Au electrodes showed significant degradation 
during bending cycles.

Ultimately, flexible electronics must be stretchable, and 
the devices should maintain stable electrical and mechanical 
characteristics under deformation (bending, twisting).[54,109,145] 
For stretchable and conformable artificial synapses, a mem-
ristor with a Au/Ag-nanoparticle-doped thermoplastic polyure-
thane/Au structure was fabricated on a poly(dimethylsiloxane) 
(PDMS) substrate (Figure 7a).[54] To demonstrate its feasibility 
for application in future wearable and implantable electronics, 
the stretchable memristor was attached onto a latex glove; the 
memristor array adhered well to the glove with conformal con-
tact (Figure 7a, top). The device showed depression and poten-
tiation characteristics with negligible changes during motion 
of the finger (Figure 7a, bottom). This memristor simulated 
biological synapses at strain as high as 60%. However, when 
the stretched strain increased to 65%, the potentiation/depres-
sion characteristics disappeared, possibly as a result of signifi-
cant cracks in the Au electrodes, and decreased thickness of the 
medium layer.

Stretchable synaptic transistors with higher mechanical 
stability have been demonstrated using organic nanowires 
(ONWs) on styrene ethylene butylene styrene rubbery sub-
strates.[109] For fabrication, a single ONW was transferred onto 
a 100% prestrained styrene ethylene butylene styrene rubbery 
substrate that had been prepatterned with carbon nanotube 
S/D electrodes.[146,147] After the strain was released, the elastic 
substrate contracted and the ONW spontaneously became wavy. 
Due to the wavy structures of the ONW, and the elastic and flex-
ible characteristics of organic and carbon nanotube materials, 
the synaptic transistors maintain their initial synaptic char-
acteristics including PPF, SRDP, SDDP, and SNDP, even at 
100% strain.

Low energy consumption and high-density integration are 
also essential for integration of artificial nervous systems. To 
process information, a human brain consumes only about 
1–10 fJ per synaptic event.[17,18] In neuromorphic electronics, 
the synaptic energy consumption per programming is esti-
mated as[148]

E V I td dprog prog= × ×  (3)

where Vprog is the amplitude of the programming voltage pulse, 
I is the maximum current induced in the device, tprog is the 
programming pulse width. Total energy consumption can be 
calculated by integrating Equation (3) over time. The energy 
consumption can be decreased by choosing appropriate mate-
rials with different conductivity (e.g., semiconductors are 
preferred over conductor), device geometry (e.g., nanoscale 
channel length and channel width are preferred), and operation 
mechanisms (e.g., ion migration and electrochemical redox 
mechanisms are preferred over those based on phase change, 
charge tunneling and trapping, and metallic filament).

To date, a biological level of energy consumption has only 
been obtained using rigid substrates. In 2-T devices, perovskite 
and conjugated polyelectrolyte-based artificial synapses were 

Adv. Mater. 2020, 32, 1903558
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reported to consume about 10 and 20 fJ per synaptic event, 
respectively; both the devices exploited ionic migration as the 
operating principle.[108,149] In a 3-T device, nanowire lithography 
was used to develop an organic core–sheath nanowire synaptic 
transistor with 300 nm channel length; the synaptic transistor 
dissipated only ≈1.23 fJ per synaptic event (Figure 7b).[55] The 
extremely low level of energy consumption in the synaptic tran-
sistor was mainly attributed to the small dimension of the device 
and to exploitation of the ion-migration mechanism.[51,112,150]

Several factors affect energy consumption of artificial syn-
apses. Typically, the redox-reaction and ion-migration mecha-
nisms have lower energy consumption than charge-trapping 
and conductive-filament mechanisms.[151,152] Also, energy con-
sumption can be reduced by using a programming pulse width 
in the range of nanoseconds.[153–155] Although biologically low 
levels of energy consumption have been realized in rigid arti-
ficial synapse devices, the low energy consumption compa-
rable to the biological counterpart has not been achieved yet in 
flexible/stretchable neuromorphic electronics.

To process a large amount of complex information, a device 
array should be very compact, but volume reduction remains 
a demanding task. In biology, nerve fibers form high-density, 
complex, 3D neural networks. The density of synapses in 

human cortex is >109 mm-3, and the synaptic cleft distance is 
≈20–50 nm.[156,157] To achieve such high compactness, methods 
to reduce device dimension below a micrometer have been 
investigated. For example, 1D artificial synapses based on 
ONWs similar to the fiber structure of the biological nerves 
have been fabricated (Figure 7b) using nanowire lithography; 
the devices exhibited the extremely small dimension (hundred 
nanometer scale) of the channel length and the nanowire dia-
meter, which is comparable with those of biological systems.[55]

3D integration of synaptic devices has been investigated in 
flexible neuromorphic electronics (Figure 7c).[73] Due to the 
ease of implementation of crossbar arrays, 2-T devices were 
used here. The 3D interconnectivity in the system demon-
strated its potential toward high-density information storage 
and multidimensional information processing, highly reduced 
size of complex device structures, and simplification of fabrica-
tion processes. This approach provides a new method to con-
struct highly integrated and advanced flexible neuromorphic 
systems for practical applications.

Flexible neuromorphic electronics based on biocompatible 
materials can provide biocompatible interfaces between elec-
tronic devices and biological systems and information can be 
transferred between them without any interruption.[145,158–161] 

Adv. Mater. 2020, 32, 1903558

Figure 7. a) (Top) Synaptic characteristics of stretchable and conformable memristor attached to index finger during various finger-bending motions (scale 
bar: 2 mm). (Bottom) I–t and V–t characteristics under bending cycle. a) Reproduced with permission.[54] Copyright 2018, The Royal Society of Chemistry. 
b) Illustration of biological nerve fibers and an organic-nanowire-based synaptic transistor emulating a biological synapse for low-energy consumption. 
Reproduced with permission.[55] Copyright 2016, The Authors, published by American Association for the Advancement of Science. Reprinted/adapted 
from ref. [55]. © The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. Distributed under 
a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC) http://creativecommons.org/licenses/by-nc/4.0/. c) Schematic diagram 
of 3D integration of flexible synaptic devices. Reproduced under the terms of the Creative Commons Attribution 4.0 International License (https://
creativecommons.org/licenses/by/4.0/).[73] Copyright 2017, The Authors, published by Springer Nature. d) Photographs of dissolution of transient W/
MgO/ZnO/Mo synapse devices on silk substrate in PBS with time. Reproduced with permission.[139] Copyright 2018, The Royal Society of Chemistry.

http://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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Therefore, such electronic devices have applications in 
neuroprosthetics. Biocompatibility also broadens application 
ranges to include implantable, biotechnological, and medical 
devices such as electronic skin, health monitoring devices, and 
drug-delivery systems.[145,162–166]

Biomaterials are abundant, renewable, easily processed, and 
lightweight, so many have been investigated for use in fabri-
cation of biocompatible neuromorphic electronics.[167–170] For 
example, chitosan[57,64,126,166,171] and cellulose[66] have been 
used as ion conductors of gate insulators in 3-T devices, and 
collagen,[4] albumen,[170] lignin,[75] CιC,[172] and Ag-doped 
chitosan[141] were used as active layers in 2-T devices.

Biodegradable and transient electronics have also been 
investigated. These devices are suitable for use in medical diag-
nosis, because they can degrade or dissolve and therefore do 
not entail surgery for removal. The natural degradation also 
reduces the production of electronic wastes.[82,165,166,173] There-
fore, biodegradable devices have numerous potential applica-
tions in information security, implantable biomedical systems, 
and environmentally benign electronics.[165,173,174]

To achieve biodegradability, a 3-T device has been fabricated 
by using indium zinc oxide (IZO) as both S/D electrodes and 
a semiconductor layer, chitosan electrolyte as a gate insulator, 
and a graphene-coated PET as a substrate.[138] All components 
except for the PET substrate dissolved completely in deionized 
(DI) water after 30 min.

Biodegradable flexible substrates have been introduced to 
enable total decomposition of neuromorphic devices. In a 2-T 
device, lignin doped with Au nanoparticles was used as an 
active layer and polylactide was used as the flexible substrate. 
This device disintegrated into small pieces after immersion for 
5 days in an aqueous solution of proteinase.[140]

A W/MgO/AnO/Mo memristor on a silk protein substrate 
was also completely degraded both in phosphate-buffered 
saline solution (PBS) of pH = 7.4 and in DI water within 7 min 
at room temperature (Figure 7d).[139]

For a 3-T device, sodium alginate (SA), a hydrophilic 
polysaccharide from seaweed, was exploited both as a gate 
insulator and a substrate in a freestanding form.[143] Semicon-
ductor layers were fabricated by Al–Zn–O (AZO) films which 
have nontoxic, biodegradable, and water soluble properties. 
Including the biodegradable SA-based freestanding film, all 
components of the device totally dissolved in 120 s.

4. Flexible Neuromorphic Electronics for Learning, 
Memorizing, and Recognition

One of the goals of the neuromorphic electronics is to emulate 
the abilities of a biological brain, which can learn, memorize, 
and recognize without instruction. Thus, many approaches 
have been based on simple replication of synaptic functions to 
advance toward emulating the intelligent behaviors of brains. 
This section reviews these investigations in the field of flexible 
electronics, from simple examples that can recognize Boolean 
logic and undergo Pavlovian conditioning, to pattern and image 
recognition with two types of neural networks. Advances beyond 
these devices may realize complex behaviors of the biological 
brain, and form the core technology for future IoT and AI.

4.1. Boolean Logic

The process of interfacing neuromorphic electronics with elec-
tric circuits in computing requires logical operations, because 
they can be used to model information flow through electrical 
circuits. Logical operations have been demonstrated using flex-
ible 3-T synaptic devices. Boolean logics require two or more 
inputs, so multiple in-plane gate electrodes have been adopted 
as presynapses. Multigate structures can emulate the informa-
tion processing in a biological neurons in which thousands of 
inputs from dendrites are integrated and processed for compu-
tation and memory-related functions.[175–177] Synaptic integra-
tion has an important function for information transformation 
in the nervous system, and has important implications for 
neural computation and memory-related functions. Previous 
synaptic transistors have taken advantage of proton-conducting 
electrolytes as gate insulators. These electrolytes include 
graphene oxide (GO),[115] phosphosilicate glass (PSG),[127] and 
chitosan[57,178] which enable coupling of the electric fields 
applied by multiple in-plane gate electrodes, to effectively mod-
ulate channel conductivity. Here, the protons are regarded as 
neurotransmitters, and channel conductivity is regarded as the 
synaptic weight, and in these devices, n-type channel layers 
were used.

In a device that has two gate electrodes (G1 and G2), at 
VGS2 = −1.0 V, most of the protons (red dots) in the proton-
conducting insulator, i.e., GO (green part) migrate into the 
insulator/G2 gate electrode interface, so few protons remain in 
the insulator/channel interface (orange part); as a result, few 
electrons are electrostatically induced in the channel layer and 
the drain current (black line in Figure 8b) is not modulated (left 
panel of Figure 8a). However, at VGS2 = 1.0 V, the electrostatic 
force drives numerous protons toward the insulator/channel 
interface (right panel of Figure 8a), so the conductivity of the 
channel can be easily modulated by adjusting the value of VGS1 
(red line in Figure 8b). Thus, the ON state of the drain current 
was higher than the threshold, and could only be attained when 
both of the gate inputs were ≥1.0 V. This phenomenon was 
used to demonstrate “AND” logic operation in flexible synaptic 
transistors that used GO as proton-conducting gate insulators, 
IZO as channel layers, and PET as substrates.[115] The input 
gate voltage of −1.0 V was set as logic “0” and 1.0 V was set as 
logic “1.” ON current > 0.75 µA could only be achieved when 
both the input signals of G1 and G2 were “11” (left panel of 
Figure 8c). In addition, by using different areas of two gate 
electrodes, that is, larger area of G2′ than G1, the device was 
applied for “YESG2′” logic in which output EPSC current 
induced from simultaneous two gate spikes was larger than 
the threshold (ON state) as long as input G2′ was ≥1.0 V (logic 
“1”). More specifically, the area of G2′ was designed to be larger 
than the area of G1, so the EPSC current from G2′ was much 
higher than from G1. In this case, when the spikes from G1 
and G2′ were applied simultaneously, the output EPSC higher 
than threshold (ON state) could only be dominated by the logic 
of G2′ (right panel of Figure 8c).

PSG has been used as a proton-conducting gate insu-
lator on flexible Si membrane substrates for logic application 
(Figure 8d).[127] The estimated thickness of the Si membrane 
was ≈30 µm, which is much smaller than conventional rigid Si 
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substrates that are several hundred micrometers thick. Introduc-
tion of a modulatory terminal Gm that provides an additional gate 
input, enabled modulation of the coupling effect among multiple 
gate inputs, so both the “OR” and “AND” logics were realized in a 
single device. With a modulatory spike Vm = 0.6 V, the measured 
EPSC was ≈1.73 µA at presynapse 1 (G1) and ≈1.71 µA at pre-
synapse 2 (G2) (left panel of Figure 8e). With synchronous pre-
synaptic spikes both at G1 and G2, the EPSC was ≈2 µA. When 
logic “1” was set as the EPSC value of 1.6 µA, an “OR” logic was 
demonstrated with Vm = 0.6 V. When Vm of −0.6 V was applied, 
the EPSC was ≈1.53 µA at G1 and ≈1.47 µA at G2, and with syn-
chronous spikes both at G1 and G2, the EPSC was ≈1.78 µA  
(right panel of Figure 8e), which shows “AND” logic. These 
results demonstrated that logic operations can be switched 
between “AND” and “OR” in the same device, by modulating Vm.

A freestanding chitosan membrane prepared by a simple 
coating–peeling process was used as both a proton-conducting 
layer and as a flexible substrate (Figure 8f).[57,178] On 100 µm 
thick freestanding chitosan membrane, multiple in-plane gates 
were formed as presynaptic input terminals. Here too, “AND” 
and “OR” logical operations in a single device were realized by 
controlling the value of Vm.

4.2. Pavlovian Conditioning

Pavlovian conditioning is a learning process in which con-
ditioned stimulus (CS; bell ringing) becomes paired with an 

unconditioned stimulus (US; sight of food) by repetition of 
pairing (both bell ringing and sight of food, simultaneously or 
sequentially).[179] Initially, only the US provokes the uncondi-
tioned response (UR; here, salivation). After repeated pairing, 
the CS alone evokes the conditioned response (CR) of saliva-
tion, i.e., the CR can be obtained by learning processes, whereas 
the UR is a biological response.

To demonstrate Pavlovian conditioning, a multigate structure 
was used; it had P3HT as an organic semiconductor (OSC), 
and ion gel as a gate insulator (Figure 9a).[63] Application of 
four spikes (−5 V) to Gate 1 (G1) indicated “sight of food” and 
application of four spikes to Gate 2 (G2) indicated “bell ringing” 
(Figure 9b). The threshold value that corresponds to “salivation” 
was set to be 45 µA. When voltage spikes of −3 V (bell ringing) 
were applied only to G2, the output of synaptic weight did not 
exceed the threshold value (salivation did not occur). When four 
spikes of −5 V (sight of food) were applied to G1, the synaptic 
weight exceeded the threshold, so “salivation” occurred. To simu-
late a conditioning process (“sight of food” while “bell ringing”), 
four spikes of −3 and −5 V were applied simultaneously to G1 
and G2, respectively. The conductance of P3HT increased after 
training, so the output could exceed the threshold for salivation 
even when low voltage spikes of −3 V were applied to G2 (bell 
ringing); this result demonstrated the pairing of “bell ringing” 
with “sight of food.” However, to demonstrate classical condi-
tioning, this study used different amplitudes of input spikes, 
whereas biological systems generally use STDP.[180]

Adv. Mater. 2020, 32, 1903558

Figure 8. Applications of flexible neuromorphic electronics for Boolean logic. a) Schematic illustrations of proton distribution under VGS2 = −1.0 V  
(left panel) and VGS2 = 1.0 V (right panel) in multigate artificial synapses. Red circles: protons; orange part: semiconductor layer. S: source, D: drain; VDS: 
voltage applied between S and D. b) Transfer curves (IDS–VGS1) of the flexible artificial synapses with VGS2 applied at −1.0 (black line) and 1.0 V (red line). 
c) Inputs of two gates and the corresponding EPSC values (outputs) of the “AND” (the left panel) and “YESG2” (the right panel) logics. Dashed lines 
indicate the threshold value (0.75 µA) of the “ON” state. a–c) Reproduced with permission.[115] Copyright 2016, Wiley-VCH. d) Schematic illustration 
of a multigate artificial synapse with a modulatory terminal on a Si membrane. e) “OR” (left panel) and “AND” (right panel) logic operations regulated 
by modulatory spike Vm of (0.6 V, 20 ms) and (−0.6 V, 20 ms), respectively. Red lines: threshold value (1.6 µA) of the “ON” state. d,e) Reproduced with 
permission.[127] Copyright 2016, American Chemical Society. f) Multigate artificial synapse with the modulatory terminal on a freestanding chitosan 
membrane. Reproduced with permission.[57] Copyright 2015, Wiley-VCH.
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Pavlovian learning using STDP was emulated using syn-
aptic transistors based on chitosan (Figure 9c).[64] The synaptic 
weight was changed by controlling the timing between two 
spikes. The presynaptic spike applied to the gate was consid-
ered as “bell ringing” and the postsynaptic spike applied to 
the drain as “sight of food.” With application of the postsyn-
aptic spike (sight of food), the output of synaptic weight was 
above threshold; this state corresponds to “salivation.” With the 
presynaptic spike (bell ringing), synaptic weight was below the 
threshold value (Figure 9d). During the training process, when 
the presynaptic spike was applied 20 ms before the postsynaptic 
spike, the synaptic weight was strengthened. After training, 
application of presynaptic spikes (bell ringing) alone caused 
the synaptic weight to exceed the threshold (salivation). A 
detraining process was performed by applying the presynaptic 
spike 20 ms after the postsynaptic spike, thereby decreasing 
the synaptic weight. In this case, the application of presynaptic 
spikes (bell ringing) no longer caused the synaptic weight to 
exceed the threshold (salivation).

4.3. Pattern and Image Recognition

A neural network is a hierarchical arrangement of neurons 
joined by synapses that have variable strengths. The strengths 

respond in various ways to stimulation; these responses are the 
basis of learning. An artificial neural network is constructed 
using artificial synapses with variable conductances to mimic 
the architecture of a brain, and to achieve its learning ability. 
Here, we consider the basic artificial neural network (ANN) and 
the spiking neural network (SNN). The ANNs and the SNNs 
have revolutionized the fields of machine learning and deep 
learning. They have realized computer vision such as pattern 
and image recognition.[181–184] The recognition procedures of 
neuromorphic electronics consist of learning, memorizing the 
synaptic weight, and finally recognizing. In this section, the 
pattern and image recognition processes will be dealt with in 
two categories of the ANN and the SNN.

4.3.1. Artificial Neural Networks

Learning by ANNs requires vector matrix multiplication 
(VMM) (Figure 10a).[185] First, input data x are unwrapped to a 
row vector (1 × n) and each input datum is connected to each 
value (w; specific weight) of the next layer which is arranged 
in a matrix for VMM. The weights are modulated by applying 
training algorithms for forward and backward propagation. 
During forward propagation, the VMM of ym = Σnwnmxn is 
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Figure 9. Pavlovian conditioning of artificial synapses. a) Schematics of multigated synaptic transistor with P3HT as an organic semiconductor, and 
ion-gel as a gate insulator. b) Synaptic weight change resulting from presynaptic spikes. Red lines: presynaptic spikes of “bell ringing” (VG2 = −3 V, 
pulse width tp = 50 ms, pulse period Tp = 50 ms); green lines: “sight of food” (VG1 = −5 V, tp = 50 ms, Tp = 50 ms); blue lines: postsynaptic current 
showing synaptic weight change. a,b) Reproduced with permission.[63] Copyright 2018, American Chemical Society. c) Schematics of chitosan-based 
synaptic transistor. d) Synaptic weight change resulted from STDP. Training was realized by setting Δt = −20 ms and detraining was realized by setting 
Δt = 20 ms. c,d) Reproduced with permission.[64] Copyright 2018, Wiley-VCH.
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required. When a crossbar array of artificial synapses is used 
to represent each weight, the VMM can be efficiently calculated 
by using Kirchhoff’s current law that calculates output current

I G Vm nmn n∑=  (4)

where Gnm is the weight (conductance) of the synaptic devices 
at node (n, m), and Vn is the input voltage of row n.

After forward propagation, synaptic weight is controlled by 
the backpropagation process, by using a supervised learning 
method.[186] Error of the jth node is calculated as ej =  tj −  yj, 

where yj is the real output value and tj is the target output. ej is 
used to guide adjustment of synaptic weight as

w e xij j iα∆ =  (5)

where α > 0 is a constant learning rate, ej is the error of jth 
node, and xi is the ith input. Most of ANNs have two or more 
layers, so usually i ≥ 2. Artificial synapses must have control-
lable multistate conductance (typically >100 states), and have 
analog conductance for processing a huge amount of informa-
tion, like a biological brain. In addition, for ideal operation, the 
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Figure 10. a) Schematic of fully connected ANN. b) Flexible artificial synapses based on PEDOT:PSS. c) Cycle tests of potentiation and depression in 
PEDOT:PSS-based artificial synapses (10 cycles). b,c) Reproduced with permission.[133] Copyright 2018, American Chemical Society. d) Cycle tests of 
potentiation and depression of artificial synapses with PEDOT:PSS/PEI film as organic semiconductor layer and Nafion films as gate insulator. Inset: 
uniform and nonvolatile conductance differences between consecutive stages. Reproduced with permission.[112] Copyright 2017, Springer Nature. 
e) Conversion of intensity information in each pixel into time-dependent spike forms. f) Schematics of a neuron circuit consisting of inverters (orange), 
CNT synaptic transistors with floating gate (yellow), and integrators, comparators, and wave form generators (blue). e,f) Reproduced with permis-
sion.[92] Copyright 2017, American Chemical Society.
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conductance state of ANNs must be linear and symmetrical, 
and cycle-to-cycle deviation must be low.

After the learning process is completed, the trained synaptic 
weights are assigned to the synaptic devices. Thus, the ANN 
must have the ability to retain updated synaptic weight. In batch 
learning, recognition is performed after the completion of a 
series of training steps on a group of patterns. In this type of 
learning, precise recognition requires that the synaptic weight 
be retained for a long time (generally desired to be >10 years).[187] 
By contrast, during online learning where training and recogni-
tion are performed simultaneously on each pattern, the synaptic 
weight is modulated continuously and off-loaded routinely.

An ANN that used a flexible artificial synapse based on 
PEDOT:PSS achieved face recognition accuracy of 95.2% 
(Figure 10b)[133] on the Yale Face Database after 600 training 
epochs.[188] The learning and recognition process was simulated 
using experimental data from an artificial synaptic device based on 
PEDOT:PSS. This high accuracy was possible because each artifi-
cial synapse had 300 conductive states with long retention time, 
and the device operated stably for 10 cycles (Figure 10c). However, 
the devices had nonlinear conductance states (Figure 10c).

The nonlinearity of conductance states was improved by using 
synaptic transistors composed of Nafion as a gate insulator layer, 
and PEDOT:PSS/poly(ethylenimine) (PEI) as an active layer; 
these synaptic transistors were used for pattern recognition 
(Figure 6c(ii)).[112] The redox reaction of PEDOT:PSS/PEI channel 
yielded 125 potentiation states; depression states were also 
obtained (Figure 10d). The conductance states of potentiation 
and depression showed linear and symmetric features, which 
is desirable to obtain high accuracy in a learning process. The 
high electrical resistance of Nafion as the gate insulator inhibited 
spontaneous redox reaction, so the depression states were very 
linear, the conductance states were uniform over cycle tests, and 
retention time was long. These good characteristics yielded an 
artificial synapse device that had recognition accuracy of 97% in 
simulation with the Modified National Institute of Standards and 
Technology (MNIST) database of handwritten digits.[112]

4.3.2. Spiking Neural Networks

Biological nervous systems use STDP to transfer and process 
information that is encoded as the timing of spikes with a fixed 
amplitude; in this way they achieve high information capacity 
and noise robustness, so a relatively low amplitude of signals 
is sufficient to convey information and this signal form is 
advantageous for mechanically flexible and stretchable elec-
tronics in which various noises are inevitably generated during 
stretching and bending deformation. In addition, biological sig-
nals are processed in an event-driven manner, i.e., the synapses 
fire only when a membrane potential reaches a specific value, 
rather than at each propagation cycle,[189–191] which shows high 
energy efficiency.

SNNs have appeared to emulate biological signals that 
exploit STDP.[192–194] SNNs incorporate the concept of time into 
their operating model, in addition to the conductance states 
of synaptic devices. However, investigation of SNNs is in an 
immature stage, especially in the field of flexible neuromorphic 
electronics. Methods to construct SNNs (e.g., device structures, 

driving principles, desired specifications of devices) have not 
been standardized. Therefore, development of SNNs presents 
an open field of research.

In flexible devices, synaptic transistors composed of carbon 
nanotubes (CNTs) with Au floating gates were first introduced 
to demonstrate the SNN.[92] Here, the synapse was composed 
of three CNT transistors, and the neuron circuit consisted of a 
leaky integrator, a comparator, and a waveform generator. For 
the SNN, the MNIST data were converted to time-dependent 
spike forms from 0 to 50 ms, which encoded the intensity of 
information in each pixel (Figure 10e). To implement the event-
driven characteristics of biological systems, in which spikes are 
fired only when postsynaptic current exceeds a threshold value, 
a comparator was used to compare the input (the postsynaptic 
current) with the threshold value (blue part of Figure 10f). 
When a neuron fired more frequently than others, the threshold 
voltage of the comparator (Vth,C) was increased; otherwise Vth,C 
was decreased. A SNN that used this method achieved ≈70% 
recognition accuracy on the MNIST dataset.

5. Flexible Neuromorphic Electronics  
for Soft Robotics and Neuroprosthetics

Integration of artificial synapses with sensing/motor elements 
will enable emulation of the sensing and responding behav-
iors of biological systems, and will be a core technology in soft 
robotics and neuroprosthetics. In biology, sensory information 
is transferred through peripheral afferent nerves, and instruc-
tions for muscles to respond are delivered using peripheral 
efferent nerves. In pursuit of methods to replicate the sensing 
and responding functions of biological peripheral nerves, two 
approaches have been used: development of functional synaptic 
devices with sensing capabilities; and development of artificial 
synapses integrated with sensing/motor elements. Especially in 
integrated forms, there have been advanced demonstration for 
constructing nervous systems. This section presents research 
on development of flexible artificial peripheral nerves from two 
perspectives: as single devices and as integrated circuits.

5.1. Sensory Synaptic Devices

The combination of synaptic and sensing capabilities in a 
single device has the advantage of high compactness without 
the need for additional sensing elements.[195] Artificial synapses 
developed so far can detect light,[134,135,158,196–198] pH,[142] and 
chemicals (Table 3).[199,200]

Light-sensitive artificial synapses have mostly used flexible 
2-T devices. One example is an all-inorganic photonic ReRAM 
based on perovskites (Figure 11a).[134] The pristine inorganic 
perovskites were used in this device due to their stability and 
outstanding optoelectronic properties.[201–205] A hybrid active 
layer composed of a close-packed CsPbBr3 quantum dot (QD) 
layer sandwiched between two poly(methyl methacrylate) 
(PMMA) layers was deposited on ITO-patterned PET sub-
strates. ITO was used as the bottom electrode and Ag was used 
as the top electrode. The device showed resistive switching. 
Analysis of elemental distributions in the CsPbBr3 QD films at  

Adv. Mater. 2020, 32, 1903558
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LRS determined that the resistive switching effect was a result 
of formation and annihilation of metallic filaments and Br− ion 
vacancies driven by the external electric field. This phenom-
enon was evoked by a combination of applied electric field 
and light illumination, i.e., illumination increased the ON/
OFF ratio, and yielded multilevel data storage in the devices 
(Figure 11b). The devices were combined to form an “OR” logic 
gate that used light and electric field as the input signals. How-
ever, the toxicity of lead in lead halide perovskites is a major 
obstacle to real-world applications.

Lead-free 2D perovskite (PEA)2SnI4 has been in a flexible 
light-stimulated synaptic device (Figure 11c).[135] By using 
hybrid films of rGO and PEDOT:PSS as flexible transparent 
electrodes on PET substrates, the devices maintained their 
initial memory characteristics after 1500 cycles of bending, 
which is much better mechanical flexibility and durability than 

 otherwise-identical flexible devices that had a Au electrode. 
Light illumination induced formation of electron–hole pairs, 
and some of electrons were trapped in Sn vacancies. When 
the light was turned off, the photocurrent decreased slowly 
with a relatively long relaxation time (≈3.6 s); the slow decay 
was a result of slow release of electrons trapped in the vacan-
cies. Under a second exposure of light, the trapped electrons 
in the Sn vacancies facilitated increase in the number of pho-
toinduced holes. When illuminated at various light intensities, 
a device that used this mechanism showed synaptic behaviors 
such as SDDP, SRDP, SNDP, and EPSC (Figure 11d,e).

Biomaterials have also been used in photosensitive synaptic 
devices. These devices were biodegradable and biocompatible, so 
they enable biocompatible interfaces between electronic devices 
and biological objects. These traits enable biotechnological and 
medicinal applications of artificial synapses as implantable 
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Figure 11. Photosensitive artificial synapses based on two-terminal structures. a) Schematic and b) I–V characteristics of the CsPbBr3-QD-based 
ReRAM devices in the dark or under UV illumination (peak wavelength 365 nm; intensities 0.041 ≤ IL ≤ 0.153 mW cm−2). a,b) Reproduced with per-
mission.[134] Copyright 2018, Wiley-VCH. c) Schematic diagram, d) ΔEPSC under light pulse (peak wavelength 470 nm; intensity 40 µW cm−2) with 
various pulse durations 1 ≤ tduration ≤ 200 ms, and e) ΔEPSC under light pulses (tduration = 10 ms) at 3.4 ≤ IL ≤ 39.2 µW cm−2 of 2D (PEA)2SnI4 flexible 
photoconductors. c–e) Reproduced with permission.[135] Copyright 2018, The Royal Society of Chemistry. f) Cross-sectional scanning electron micro-
scopy image of the CDs–silk based ReRAM. g–i) I–V characteristics based on metal anode of Al (g), Au (h), and Ag (i) under UV light exposure (peak 
wavelength 365 nm; 0 ≤ IL ≤ 0.15 mW cm−2. f–i) Reproduced with permission.[158] Copyright 2018, Wiley-VCH.
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electronic devices, biosensors, and wearable systems. A photo-
sensitive ReRAM based on metal anode/carbon dots (CDs)–silk 
protein/ITO was systematically investigated with Al, Au, or Ag 
as an anode (Figure 11f).[158] Devices with Al and Au anodes 
exhibited write-once read-many-times memory behaviors as a 
consequence of their charge-trapping mechanism (Figure 11g,h). 
By contrast, electrochemical metallization occurred as a result of 
reversible bipolar-resistive switching properties of the Ag-based 
devices (Figure 11i). Use of CDs that have light-tunable charge-
trapping capacity, yielded a set voltage and ON current that could 
be effectively tuned by exposure to ultraviolet light.

A pH-sensing synaptic device was demonstrated using a flex-
ible IZO-based synaptic transistor with multiple input gates 
(Figure 12a).[142] A nanogranular SiO2 (n-SiO2) electrolyte film 
was deposited as a proton-conducting gate insulator on an ITO-
coated PET substrate. A Ag/AgCl reference electrode immersed 
in a solution droplet acted as the sensing gate (G1) and in-plane  

Al electrodes were used as the control gates (G2). As previ-
ously (Section 4.1), the carrier density of the IZO channel 
was modulated by the effective electric field that was coupled 
by G1 and G2. The flexible synaptic transistors endured more 
than 1000 flexing-and-flattening cycles with negligible change 
in their transfer characteristics. Acidic solutions increased  
the positive surface potential at the solution/SiO2 interface, 
and the positive surface potential drove protons in the SiO2 
electrolyte toward the SiO2/IZO interface. This process induces 
additional electrons in the IZO channel, so as pH decreased, the 
magnitude of EPSC increased (Figure 12b). Control of the voltage 
of G1, especially with an appropriate negative bias, increased  
the devices’ sensitivity and reduced their energy consumption.

A chemical-sensing synaptic device based on whole 
organic materials was demonstrated to detect dopamine (DA) 
without the need for a specific recognition moiety. The artifi-
cial synapse consisted of two electrodes of PEDOT:PSS, and 
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Figure 12. a) Structure and b) pH-sensing performances based on a single spike mode of pH-sensing artificial synapses. a,b) Reproduced under the 
terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).[142] Copyright 2015, Springer 
Nature. c) Dose curves in response to DA solutions (black squares), DA + 100 × 10−6 m AA (green hexagons), and DA + 3 × 10−6 m UA (purple lozenges) 
of chemical (dopamine)-sensing artificial synapses. S is defined as ratio of variation in relaxation time. Reproduced with permission.[199] Copyright 2017, 
American Chemical Society. d) Schematic diagram of human olfactory receptors and organs, e) output signals, and f) various synaptic characteristics 
(LTP and PPF) of chemical-sensing artificial synapses in response to 20 ppm NO2 gas pulses. d–f) Reproduced with permission.[200] Copyright 2019, 
The Royal Society of Chemistry.

https://creativecommons.org/licenses/by/4.0/
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flexible substrates of PDMS.[199] The devices may sense DA 
by responding to attractive and repulsive forces between the 
analytes and PEDOT:PSS. That is, since DA is a cation at 
physiological pH and PSS is a cation-exchange polymer, so 
attractive forces would form between them. Both ascorbic acid 
(AA) and uric acid (UA) are anions at physiological conditions, 
so they develop electrostatic repulsion with PSS. This mecha-
nism enabled the synaptic device to selectively detect DA con-
centrations [DA] as low as 1 × 10−12 m even in the presence of 
[AA] = 100 × 10−6 m and [UA] = 3 × 10−6 m which are physi-
ological levels of two major interfering agents in cerebrospinal 
fluid and the striatum (Figure 12c).

A human olfactory system was emulated by a conform-
able 3-T synaptic device for sensing hazardous gas (NO2) 
(Figure 12d).[200] This NO2-sensing synaptic device was  
fabricated on a freestanding polyvinyl alcohol (PVA) substrate 
(Figure 12e). When the device was exposed to pulses of NO2 
gas, the NO2 molecules were captured and remained on the 
surface of the semiconductor layer, which acted as electron 
trapping sites. This process led to increased accumulation of 
holes in the semiconductor layer, and as a consequence, the 
current increased. When the gas pulse ceased, the increased 
current was maintained to some extent, because the captured 
gas molecules in the semiconductor layer took some time to 
be dedoped from it. Thus, this NO2-sensing artificial synapse 
exhibited synaptic properties.

5.2. Artificial Synapses Integrated with Sensors

To use external stimuli as inputs of artificial synapses, they can 
be integrated with various sensors such as photo- and pressure 
sensors. These kinds of integrated circuits have been composed 
of various device components, exploited different mechanisms, 
and shown various synaptic characteristics (Table 3).

To emulate human visual-perception systems, a memristor 
was integrated with a UV image sensor on flexible PI sub-
strates in series (Figure 13a).[206] In the artificial visual memory 
system, Al2O3 was used as active layers of the memristors due 
to its good bipolar resistive switching properties, and in the 
image sensors, In2O3 was used as active layers because of its 
high sensitivity to UV light. In the integrated system, the detec-
tion of UV light by the image sensors was recorded in mem-
ristors, and this realized detection and memory capacities that 
provide and advance to emulation of human visual memory. 
Visual memory arrays composed of 10 × 10 pixels detected a 
butterfly shaped image and stored it for at least 1 week (top 
panel of Figure 13b). The stored information could be erased by 
a reset-negative voltage and reproduced repeatedly; this result 
demonstrated the reusability of the integrated devices (bottom 
panel of Figure 13b).

Another approach used a ferroelectric/electrochemical mod-
ulated organic synaptic device that was integrated with organic 
light-sensitive element (Figure 13c).[132] In previous studies, 

Adv. Mater. 2020, 32, 1903558

Figure 13. Flexible artificial synapses integrated with photosensitive elements. a) Schematic diagram of an artificial visual memory system by the 
integration of a memristor and a UV image sensor and b) information storage characteristics for the applied patterned light and reusability of the arrays 
of these systems. a,b) Reproduced with permission.[206] Copyright 2018, Wiley-VCH. c) Schematic of a LOND (ferroelectric/electrochemical modulated 
organic synaptic device integrated with an organic light-sensitive element) and d) response characteristics of LONDs under different wavelength of 
light (top panel: 850 nm; bottom panel, 550 nm). c,d) Reproduced with permission.[132] Copyright 2018, Wiley-VCH.



© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1903558 (24 of 32)

www.advmat.dewww.advancedsciencenews.com

Adv. Mater. 2020, 32, 1903558

LTP functions that are related with information consolidation 
and memory were unreliable. In this research, to strengthen 
the nonvolatile memory functions, a ferroelectric organic 
material (P(VDF-TrFE)) was additionally inserted as a gate insu-
lator layer in the synaptic transistors. This device is advanta-
geous over conventional electrochemical transistors, because 
the extra ferroelectric LTP provides reliable nonvolatile memory 
and exhibits three types of plasticity: STP and LTP by electro-
chemical doping and dedoping, and ferroelectric LTP by dipole 
switching. By using the artificial synapses as information pro-
cessing units, a light-triggered organic neuromorphic device 
(LOND) was demonstrated. The LOND transduced light inten-
sity and frequency information into synaptic signals either in 
volatile or nonvolatile forms. It could also recognize colors: the 
volatility of synaptic signals was different at light wavelength, 
i.e., electrochemical LTP at 850 nm and ferroelectric LTP at 
550 nm (Figure 13d).

Artificial strain and touch perception has been demon-
strated by integrating artificial synapses with nanogenerators 
(NGs).[81,207] In Figure 14a, a memristor was integrated with the 
self-powered NG.[81] The NG converts wasted mechanical energy 
(pressure information) to electrical signals (voltage pulses) 
which drive the artificial synapses. The sensing parts in this 
system were self-powered, so only the synaptic components dis-
sipated energy; this attribute was distinct from the systems that 
have been described so far, which required additional energy 
to operate the sensing elements. In addition, biocompatible 
devices composed of amorphous NKN films grown on TiN/PI 
substrates were used both in the memristors and the NGs. The 

system showed various synaptic characteristics such as STP/LTP  
transition, SRDP, and metaplasticity.

For the construction of a pressure sensory alarm system, a 
flexible artificial nociceptor was connected with a piezoresis-
tive pressure sensor (Figure 14b).[78] A nociceptor is a general 
receptor that signals a stimulus is harmful, so nociceptors 
would be useful in robots and prosthetics to help them to avoid 
injury in dangerous environments. Here, the artificial nocic-
eptors were based on flexible Ag/CιC/ITO/PET memristors, 
because the biopolymer is abundant, inexpensive, biocom-
patible, and mechanically flexible. The biological nociceptive 
characteristics of threshold, relaxation, allodynia, and hyper-
algesia behaviors were emulated by formation and rupture 
of Ag filaments in the memristors. When the applied voltage 
(VA) was lower than the threshold voltage of the memristor 
(Vth,M), its resistance is much higher than the series resistor 
in Ch2, so full voltage drop occurred at the memristor. How-
ever, when VA > Vth,M, the memristor was turned ON and the 
voltage dropped by nearly half at the series resistor. Specifically, 
with the application of low pressure (black curves), VA < Vth,M 
was generated from a piezoelectric module (the top panel of 
Figure 14c) so that no output alarm signal (Ch2) was generated 
(bottom panel of Figure 14c). Under medium pressure (blue 
curves), when VA approached Vth,M = 0.6 V, an alarm signal 
was generated. Finally, when high pressure (red curves) was 
applied, higher alarm signal was produced at a shorter onset 
time. These nociceptors had the valuable characteristic of 
becoming sensitized: when a second pressure lower than the 
threshold value was applied, the alarm signal was generated 

Figure 14. Flexible artificial synapses integrated with tactile sensors. a) A memristor integrated with a self-powered NG. Reproduced under the 
terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/).[81] Copyright 2017, The Authors, 
published by Springer Nature. b) Schematic diagram of a pressure sensory alarm system with a flexible artificial nociceptor (memristor) and a 
piezoresistive pressure sensor. c) Voltage at the piezoelectric module Ch1 (top panel) and voltage applied at the series resistor Ch2 (bottom panel). 
b,c) Reproduced with permission.[78] Copyright 2019, The Royal Society of Chemistry. d) Schematic (top panel) and equivalent electrical circuit (bottom 
panel) of the DOT-TPS (a synaptic transistor integrated with a transistor-type pressure sensor) and e) its responses with increasing touch times (the 
top panel) and various repetition cycles (the bottom panel). d,e) Reproduced with permission.[171] Copyright 2017, Wiley-VCH.

https://creativecommons.org/licenses/by/4.0/
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with no delay time. This trait can accelerate a prosthetic’s avoid-
ance of damaging stimuli.

A dual organic transistor–based tactile perception element 
(DOT-TPE) was demonstrated by integrating a synaptic tran-
sistor with a transistor-type pressure sensor. The DOT-TPE per-
mits immediate sensing of pressure stimuli and synapse-like 
information processing in a single element (Figure 14d).[171] 
Polymers were used to achieve organic synaptic transistors: 
poly(diketopyrrolopyrrole-terthiophene) (PDPP3T) was used as 
an OSC, and chitosan was used as a proton-conducting gate 
insulator. A DOT-TPE is an integrated synaptic transistor, so 
the output of the DOT-TPE is determined by a combination of 
the intensity, frequency, duration, and the number of pressures 
(Figure 14e). This characteristic is distinct from a stand-alone 
sensing device, in which the output current is governed only 
by the pressure intensity, regardless of other information about 
the applied pressure. However, although this integrated system 
could distinguish tactile patterns, it could not learn to identify 
and recognize them.

5.3. Integration for Constructing Artificial Nervous Systems

The previously mentioned sensory synaptic devices and inte-
grated circuits could sense external stimuli and showed 
various synaptic characteristics, when sensory information was 
provided as input. However, the postsynaptic output signals 
from artificial synapses has not been used to demonstrate 
practical functions for advanced applications such as recogni-
tion/learning and motor functions; this section introduces inte-
grated systems for constructing artificial nervous systems that 
perform advanced functions (Table 4).

5.3.1. Recognition and Learning

A neuromorphic tactile processing (NeuTap) system that uses 
machine learning was introduced to provide learning capability 
to emulate the cognitive functions of animals.[208] The system 
consisted of a resistive pressure sensor, a soft ionic cable, and a 
synaptic transistor, to respectively emulate a receptor, an axon, 
and a synapse in a biological sensory neuron (Figure 15a). 
Tactile stimuli were converted into electrical signals by the pres-
sure sensor, then transmitted through the ionic cable to the 
synaptic transistor for information processing. To integrate and 
differentiate the spatiotemporal features of tactile patterns, two 
pressure-sensing terminals were combined with the synaptic 
transistor; depending on the pressure loads on the two sensors, 
the applied voltages generated by each sensor were coupled 
through the PVA-based gate insulator of the synaptic transistor, 
and thereby modulated the conductivity of the indium tung-
sten oxide (IWO) channel (Figure 15b). As a proof-of-concept, 
one sensing terminal in the NeuTap system was used for tac-
tile pattern recognition, and the machine-learning method was 
implemented on the system (Figure 15c). Convex patterns were 
defined as “1” and flat patterns were defined as “0”. Pattern 
pairs were labeled using binary codes of “00,” “01,” “10,” and 
“11.” The error rate of recognition decreased from 44% to 0.4% 
after repeated training; this result is similar to the perceptual 
learning processes of the humans.

An artificial haptic neuron system was constructed by com-
bining a 2-T piezoresistive pressure sensor with a Nafion-based 
organic memristor (Figure 15d).[209] This system learned to rec-
ognize English letters under a supervised learning method. The 
pressure sensor transformed pressure stimuli into electrical 
signals. The Nafion-based memristor exhibited fundamental  

Table 4. Summary of flexible neuromorphic electronics for artificial nervous systems (ANSs).

Ref. Structurea) Sensing input/
pulse conversion

Energy consump-
tion of systemsb)

Functions Signal 
recognitionc)

Biocompatibility 
of signalsd)

Similarity with 
biologye)

Publication 
date

[109] 3-T Light/no Lowf) Sensorimotor nervous system 

(artificial motor nerves) and 

recognition (Morse code of 

English letters)

Optical signal 

recognition (26 

Morse codes of 

English letters)

No, possible 

biointerfacing

High November 

2018

[110] 3-T Pressure/yes Relatively lowg) Reflex arc in PNS (artificial 

sensory and biological motor 

nerves) and recognition 

(Braille characters, object 

movement)

Improved 

recognition in 

ANSh) (4 Braille 

characters)

Yes High June 2018

[208] 3-T Pressure/no Highi) Recognition and learning 

(two-bit binary code)

KNN (3 pat-

terns) (error rate 

0.4%)

No biointerface Low July 2018

[209] 2-T Pressure/no Highi) Recognition and learning

(English characters)

KNN (6 English

characters)

(accuracy 91.7%)

No biointerface Low May 2019

a)Structure of artificial synapses; b)Energy consumption to construct whole nervous systems and demonstrating their functions; c)Signal recognition ability of the 
systems; d)Output signals of neuromorphic electronics were compatible with biological counterparts, so they can be applied to neuroprosthetics; e)Operating principles 
and functions of the integrated systems were similar to those in biology; f)This system used self-powered sensor elements (photovolatics) as sensing parts. Usually, 
sensing parts consume higher energy compared to artificial synapses; g)This system demonstrated its functions (recognition and hybrid reflex arc) itself (without aid of 
learning methods); h)To emulate signal integration and partial information processing in biological synapses, additional artificial synapses were connected to several sets 
of two pixels for Braille reading (one pixel is composed of one pressure sensor and one ring oscillator), so it improved the discrimination among the Braille characters;  
i)Refs. [208] and [209] adopted learning methods for demonstrating advanced functions (learning), so high energy consumption was inevitable.
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synaptic functions such as PPF, PPD, and STDP with low power 
consumption of 10–200 pJ per synaptic event, and high stability 
for >104 cycle tests. The combination of the pressure sensor 
and the memristor could process and learn various tactile 
patterns, by comparing the amplitude, duration, frequency, 
and speed of external pressure. English characters have dif-
ferent numbers and durations of strokes; this individuality was 
exploited for this integrated system to recognize English let-
ters (Figure 15e). A supervised learning method that used the 
k-nearest neighbors (KNN) algorithm was implemented on the 
system. After training, the classification accuracy for each letter 
reached 91.7%; this result demonstrated successful perceptual 
learning (Figure 15f).

5.3.2. Artificial Peripheral Nervous Systems

To demonstrate a hybrid reflex arc that was composed of arti-
ficial sensory nerves and biological motor nerves, the artificial 
sensory nerve was made of pressure sensors, an organic ring 
oscillator, and a synaptic transistor (Figure 16a).[110] Currently 
available neuromorphic devices emulate biological systems 
only partially. The devices and systems that have been demon-
strated so far use only spike-based external stimuli, although 
numerous other forms of stimuli are encountered in the real 
world. Biological systems use signal spikes when transmitting 
and processing information; therefore, to achieve biocompat-
ibility of signal form, a spike-encoding method is required, 
especially for prosthetics. For this purpose, ring oscillators 

have been introduced in a bioinspired artificial mechanosen-
sory nerve to convert external stimuli to biocompatible spike 
signals. The system emulated information processing and 
other functions of biological systems. In the artificial nervous 
systems, an artificial mechanoreceptor (a pressure sensor) 
was integrated with an artificial nerve fiber (a ring oscillator) 
which converts pressure information to action potentials 
(spike-form voltage). The spike-form voltages from many arti-
ficial nerve fibers were connected to a synaptic transistor that 
processed the information. The synaptic transistor was inter-
faced with biological motor nerves in a detached insect leg 
(Figure 16b). This combination of an artificial sensory nerve 
and a biological motor nerve constituted a hybrid reflex arc; it 
actuated the insect’s muscles in response to external pressure 
information (Figure 16c). This device verifies the applicability 
of artificial sensory nerves for neuroprosthetics. The artificial 
afferent nerves also successfully detected movement direction 
of objects and identified Braille characters. To identify Braille 
characters, each synaptic device was connected to each pixel 
(one pressure sensor and one ring oscillator). Then, additional 
11 synaptic devices were connected to 11 sets of two pixels, 
which emulated the function of signal integration of biological 
counterparts. Through this signal integration, Braille letters 
were more  distinguishable. This provided a new approach for 
improving perception accuracy without the aid of a learning 
method which was adopted in previously reported recognition 
studies (Section 5.3.1).[208,209]

In addition, sensorimotor nervous systems were also dem-
onstrated (Figure 17a).[109] To achieve these nervous systems, 

Figure 15. Flexible artificial tactile-sensitive nervous systems with learning capability. a) Comparison of a NeuTap system with a biological sensory 
neuron. b) Current responses of the NeuTap neuron with two pressure sensors when sensor 1 and sensor 2 are pressed individually (cases I and II) 
and when both the sensors are pressed simultaneously (case III) (VDD1 = VDD2 = −1.0 V). c) Schematic of tactile pattern recognition and perceptual 
learning by the NeuTap equipped with the machine learning method. a–c) Reproduced with permission.[208] Copyright 2018, Wiley-VCH. d) An artificial 
haptic perception system consisting of a pressure sensor (i) and a Nafion-based memristor (ii). e) Recognition of English characters and f) perceptual 
learning processes with the implementation of supervised learning method (KNN algorithm) on the system. d–f) Reproduced with permission.[209] 
Copyright 2019, Wiley-VCH.
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artificial synapses can induce contraction of artificial mus-
cles by transferring an action potential in the same way that 
human motor nerves operate. Then, artificial motor nerves can 
be applied to achieve biomimetic natural movement by con-
necting biological nerves in bioinspired soft robots and neural 
prostheses. In addition, flexible and stretchable artificial nerves 
that maintain electrical properties even while bent or stretched 
can be applied to soft robots and neural prostheses that undergo 
movements such as bending, folding, twisting, and stretching. 
To fabricate flexible and stretchable artificial synapses, electro-
spun nanowires that had low mechanical modulus and excel-
lent flexibility were transferred to a prestretched substrate; 
they buckled when the prestrain of the substrate was released 
(Figure 17b).[109,146,147] Parallel and perpendicular stretching of 
the substrate caused stretching or folding of buckled nanowires, 
but they maintained morphological and electrical properties 
without significant plastic deformation (Figure 17c).[109,146,147] 
Ion-gel and CNT S/D electrodes also conformed to substrate 
deformation without breakdown. An ion gel–gated stretch-
able synaptic transistor based on organic nanowires did not 
show noticeable degradation in electrical properties even when 
it was stretched 100% in the parallel or perpendicular direc-
tions (Figure 17c).[109] When various patterns of presynaptic 
voltage pulses were applied, the devices exhibited stable syn-
aptic plasticity regardless of strain (Figure 17d,e).[109] A stretch-
able artificial synaptic transistor has been used to implement 
artificial sensorimotor nerves that control artificial muscles 
(Figure 17a).[109] Artificial sensorimotor nerves were composed 
of a photodetector that emulates light receptors, a stretchable 
organic nanowire artificial synapse, and a polymer actuator 
that mimics biological muscle fiber.[109] The artificial syn-
apse stimulated the artificial muscle fiber by receiving artifi-
cial action potentials from an artificial light receptor.[109] By 
controlling the contraction of the artificial muscle fiber with 

the firing frequency of artificial action potentials, the artificial 
sensorimotor nerve emulated contraction of a biological muscle 
in response to the signal from a neuromuscular junction.[109] 
Depending on the firing frequency of the action potential, con-
traction of a biological muscles changes from a twitch (weak 
and short forces), to a summation of twitches, and to tetanus 
(strong contraction).[109] In the artificial nerves, the displace-
ment of the polymer actuator was controlled by the firing of 
the artificial action potential (Figure 17f).[109] Artificial synapses 
that control biological and artificial motor units can advance the 
development of next-generation biomedical electronics, bioin-
spired soft robots, and neural prostheses.

6. Conclusion

We have reviewed the progress in development of flexible neu-
romorphic electronics, at the single-device and system levels. 
We have described basic background including device struc-
tures, working mechanisms, synaptic plasticity, and main 
parameters of flexible artificial synapses compared with those 
of biological synapses. Flexible artificial synapses use various 
working mechanisms (metallic filament, charge trapping, 
phase change, ferroelectricity, ion migration, electrochemical 
reaction), various geometries (2-T, 3-T, battery-like, multigated) 
and materials (OSCs, inorganic oxide semiconductors, perov-
skite, carbon-based nanomaterials, transition metal dichalco-
genide nanomaterials), and multipixel arrays. By emulation of 
brain functions such as logic operation, associative learning, 
and pattern and image recognition, flexible artificial synapses 
have proven their potential for use in advanced AI and cogni-
tive computing.

Flexible neuromorphic electronics that have artificial sensory 
synapses (sensing of pH, light, and chemicals) and integrated 

Figure 16. a) Comparison of biological mechanoreceptor nerves and an artificial sensory nerve made of pressure sensors, an organic ring oscillator, 
and a synaptic transistor. b) Hybrid reflex arc by integration of the artificial sensory nerve with a biological motor nerve and c) force of leg extension in 
response to pressure on the artificial afferent nerve in (b). Pressure: 39.8 kPa; duration: 0.5 s. a–c) Reproduced with permission.[110] Copyright 2018, 
American Association for the Advancement of Science.
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systems with external sensory elements (touch, light, sound) 
have the potential to be applied in next-generation wearable 
electronics, soft robotics, and neuroprosthetics. Neuroinspired 
robotic technology that operates the robot’s sensory/motor 
units by transmitting signals in a mechanism similar to those 
of biological nervous systems can be used in human-like soft 
robots. Furthermore, neuromorphic electronics can help to 
replace damaged nerves or can be used in neuroscience as a 
tool to study sensory and motor neuronal disorders.

For realization, mechanical compliance of artificial synapses 
and nerves is important for the form factor of future biocom-
patible neuromorphic electronics. Thus, the devices must be 
tolerant of the mechanical deformation. However, system-
atic research about change of synaptic properties resulting 
from mechanical stress is still lacking, despite the recent 
large amount of research on flexible artificial synapses. Par-
ticularly, device structures and materials must be optimized 
to achieve stable synaptic responses based on short-term or 
long-term synaptic potentiation or depression regardless of 

mechanical strain. Furthermore, applications of stretchable 
and biocompatible artificial synapses will expand to include 
skin-attachable and implantable neuromorphic electronics for 
wearable computing, health monitoring, and sensorimotor 
neural signal transmission; forms may include prosthetics, 
exoskeletons, and cybernetic devices. For example, artificial 
sensory synapses use input/output signals similar to electrical 
biosignals (e.g., electroencephalogram, electrocardiogram, elec-
tromyogram, and electrooculography), so the artificial synapses 
can be applied to bionic electronic devices that monitor body 
signals and exchange sensory or motor signals by connecting 
them with human nerves for medical care, rehabilitation, mili-
tary (e.g., exoskeleton), and aerospace (e.g., advanced space 
suit) purposes. For this purpose, the development of sensors 
that are highly sensitive to external stimuli (e.g., pH, chemicals, 
light, touch, sound) as well as to biosignals, and the precise 
matching of amplitude and rate of electrical signals between 
biology and electronics will be important. Researchers already 
have many approaches to demonstrate stretchable, implantable, 

Figure 17. Sensorimotor synaptic system. a) Schematic of an artificial sensorimotor nerve composed of a photodetector (light receptor), a stretchable 
organic nanowire synaptic transistor (synapse), and a polymer actuator (biological muscle fiber). b) Morphology change of a buckled organic nanowire with  
and without 100% strain. c) Electrical characteristics of a stretchable organic nanowire synaptic transistor at 0, 50, and 100% strains. d) Spike-voltage-
dependent plasticity (−0.3 to −1 V) and e) light-triggered spike-number-dependent plasticity (1–50 spikes) of a stretched artificial synapse from 0% to 
100% strains. f) Photographs of polymer actuator controlled by artificial sensorimotor nerve. a–f) Reproduced with permission.[109] Copyright 2018, The 
Authors, published by American Association for the Advancement of Science. Reprinted/adapted from ref. [109]. © The Authors, some rights reserved; 
exclusive licensee American Association for the Advancement of Science. Distributed under a Creative Commons Attribution NonCommercial License 
4.0 (CC BY-NC) http://creativecommons.org/licenses/by-nc/4.0/.
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and even self-healable electronic devices, so advanced biocom-
patible neuromorphic electronic devices are expected to appear 
soon, and will revolutionize the future of computing, robotics, 
and neuroscience.
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