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Abstract

Sections

Artificial nerves aimto replicate the functioning of the biological
nervous system and are expected to lead toimportant advancesin
bio-interactive prosthetics. Population ageing is expected to increase
the number of patients with neurological deficits or disorders worldwide
and to drive increasing global demand for effective prosthetic solutions.
Most current bio-interactive prostheses use traditional complementary
metal-oxide-semiconductor digital computing and are primarily
focused onthe restoration or rehabilitation of physiological functions
froman electronics perspective. These devices often place little
emphasis on neurological compatibility. By contrast, artificial nerve
systems consisting of neuromorphic devices offer a promising and
neurologically compatible method to either bypass damaged biological
nerves or act asaninterface between biological nerves and a prosthesis.
Artificial nerves are designed to restore lost sensory and motor
functionsinasimilar way to biological nerves by providing biologically
plausible and simplified signal processing. Moreover, artificial
nerves provide power-efficient control of prostheses and improve
users’interactions with their environment. This Review explores

the achievements and limitations of conventional bio-interactive
prostheses and describes advances in artificial nerve systems that
aim to increase functionality through the seamless integration and
neuromorphic processing of biological signals.
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Key points

e Conventional bio-interactive prostheses that rely on bulky external
computing architectures and complex algorithms have high power
use and operational latency; their low biological plausibility mandates
extensive user training.

o Artificial nerve systems based on neuromorphic hardware and
principles of synaptic plasticity replace conventional computing with
event-driven signal processing and analogue memory properties that
reduce both complexity and power consumption.

o Artificial nerves convert stimuli into neural spikes and mimic afferent
and/or efferent pathways to provide natural sensory feedback and
smooth muscle control without extensive digital processing.

e Near-sensor and in-sensor neuromorphic processing are essential to
reduce the data transfer load and enable real-time filtering and feature
extraction for accurate decoding of motor intent and sensory pattern
recognition.

o Artificial nerves that use closed-loop feedback and biocompatible
signalling enable naturalistic bidirectional communication by
dynamically adjusting motor outputs based on multimodal sensory
inputs and the user’s real-time physiological state.

o Flexible, stretchable materials and biocompatible encapsulants
ensure long-term stable performance and allow on-skin or implantable
artificial nerves to integrate seamlessly, reduce mechanical strain and
enhance user comfort in daily life.

Introduction

Nerves are easily damaged, including by physical injury, genetic fac-
tors, secondary complications and ageing. Nerve damage impedes sig-
nal transmission and can lead to permanent loss of function' . Various
attempts have been made torepair damaged nerves via microsurgery
and medication but full recovery of damaged or degenerated nerve
function remains almost impossible. Moreover, despite considera-
ble advancesin medicine and biology, no major breakthroughsin these
approaches are on the horizon. The development of bio-interactive
prostheses that canrestore these lost functions provides an alternative
method to rehabilitate patients with neurological damage* . Accord-
ingly, artificialimplementations of the key features of biological nerves
(thatis, artificial nerves) have gained considerable attention over the
past 10 years. Research into artificial nerves that can imitate biologi-
cal neural events has also surged, especially those with applications
in bio-interactive prostheses. This neuromorphic approach to the
development of bio-interactive prostheses aims to mimic the neural
architecture and functions of the human nervous system, such as
real-time information processing, event-driven responses and parallel
operation.

Bio-interactive prostheses are artificial devices that can be
designed to interact with various biological signals, including elec-
trical signals detectable by electromyography (EMG), electroencepha-
lography (EEG) or electrocorticography and chemical signals such as
ions, neurotransmitters and hormones. The purpose of bio-interactive
prosthesesistorestore lost functions and, accordingly, these systems

are designed to interact dynamically with the user’s nervous system,
unlike passive prostheses, which offer strictly limited functional-
ity and lack sensory feedback’®. Furthermore, the capabilities of
bio-interactive prostheses go beyond simple movement; these devices
are designed to provide simultaneous control of multiple degrees of
freedominreal time and thereby to closely mimic the natural behav-
iour of the human body’ . The goals of developing these devices are
to establish bidirectional communication between the biological cen-
tral nervous system (CNS) and peripheral nervous system (PNS) and
to provide sensory feedback that strengthens the user’s interaction
with the environment.

Current prosthetic technologies can be categorized as having
non-biomimetic, biomimetic or neuromorphic approaches to sig-
nal processing (Fig. 1a). Non-biomimetic signal processing usually
relies on heuristic rule-based operations and does not consider
biological neurophysiology. Movement responses to input signals
are generated by following predefined rules, which limit the degrees
of freedom available for prosthetic operation. By contrast, biomi-
metic signal processing attempts to replicate at least some of the
anatomical and physiological principles of biological systems. Such
devices leverage biological models to process sensory inputs and
generate movement patterns that closely resemble natural neural
responses. Finally, neuromorphic signal processing focuses onrep-
licating neuronal and synaptic principles using event-driven spiking
neural networks (SNNs). The results closely mimic real neural activity
and enable efficient, low-power, real-time adaptation to biological
signals.

Bio-interactive prosthetic devices researched so far typically
require substantial user training over extended periods of time'*"™,
Moreover, many such devices have not yet exploited the full potential
of synaptic functions. For example, most clinical trials have studied
functional electrical stimulation (FES) devices, which merely gener-
ate a pulse signal regardless of how the prosthesis communicates
with the biological system'®". These systems mainly use conventional
complementary metal-oxide-semiconductor digital computing for
both neuralsignal processing and electrical stimulation. This process
requires bulky external computing units and processors for signal
filtering, modulation and regression or classification that consume a
large amount of energy™ ..

To overcomethese demerits, the field of bio-interactive prosthetic
technology is moving towards the use of neuromorphic hardware that
emulates or replaces the function of impaired nerves and enables the
sophisticated and naturalistic movement of paralysed limbs while mini-
mizing the use of external high-power computing devices. Artificial
nerves could simplify the signal processing pipeline inbio-interactive
prostheses by permitting direct communication between the user and
the prosthesis, and could reduce energy consumption by mimicking
event-driven signal processing without relying on external comple-
mentary metal-oxide-semiconductor computing. Artificial nerves
also aim to seamlessly integrate with the user’s nervous system via
control and feedback mechanisms that exploit the inherent adaptive
and learning capabilities of neuromorphic devices (Fig. 1b). Thus, the
use of neuromorphic engineering can not only overcome the limita-
tions of conventional bio-interactive prostheses but also enable the
development of advanced devices with improved functionality and
an intuitive user interface. Ultimately, artificial nerves are expected
to provide a key component of this technology, which might offer a
future inwhich prosthetic devices feel and function similar to natural
extensions of their users’ bodies.
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This Review provides a guide to the development of bio- conventional signal processing architectures. We then discuss the
interactive prosthesis operated by artificial nerves. We first explore  contributions of artificial nerve systems to bio-interactive prostheses.
the features and limitations of bio-interactive prostheses based on  Finally, we discuss the essential components and strategies needed to
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signals using conventional electronics, which requires prior modelling of synaptic plasticity, artificial nerves communicate with biological nerves and
neural activity. This approach enables more-intuitive control and enhanced restore afferent and efferent signal pathways that facilitate sensory feedback as
interaction with the prosthesis by incorporating biological models, such as wellasactuation. Spider charts display representative performance components
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results in more-realistic responses. b, Artificial nerves mimic the characteristics

Nature Reviews Electrical Engineering


http://www.nature.com/natrevelectreng

Review article

Box 1| Unidirectional bio-interactive prosthetics

Bio-interactive prosthetics interface with the nervous system
to restore lost sensory and motor functions. These advanced
prosthetics work by decoding neural signals to control prosthetic
limbs, or by encoding sensory information to send to the brain.
The best-known prosthetic devices that interact with our nervous
system are the artificial cochlea and the artificial retina. The artificial
cochlea restores hearing in individuals with hearing impairments by
transforming sound waves into electrical impulses that stimulate the
auditory nerve?®?", The artificial retina restores sight in individuals
with vision impairments by converting light into electrical signals
to stimulate the retina???", optic nerve?>?' or visual cortex®".
Additionally, thermal sensation on amputees’ phantom hands can be
provided by a non-invasive device worn at the amputation plane?®.
The sensory signals generated by these bio-interactive prosthetics
facilitate the interaction of these individuals with their environment.
When nerve pathways are damaged, they cannot conduct
generated biological signals, the consequences of which can be
severe’. For example, spinal cord injuries disrupt sensory and motor
communication and can cause permanent paralysis. However, this
issue can be addressed by providing detours around damaged
nerves. Decoding of electrophysiological signals from muscles
(detected by electromyography (EMG)) or from the motor cortex
in the brain (detected by intracortical or epicortical electrodes)
enables the intention of movement to be transmitted to prosthetic,
bionic or paralysed limbs. For example, the formation of new
cortical connections in the primary motor cortex (M1) can bypass
damaged areas®°. Recordings from brain-implanted microelectrodes
can predict motion intention?”' and thereby instruct an electrical
stimulator to activate muscles in paralysed limbs, bypassing the

createimproved bio-interactive prostheses that offer high signal pro-
cessing efficacy, biocompatible signal communication and seamless
integration with the human nervous system.

Conventional bio-interactive prostheses

Biomedical research aimed at the remediation of malfunctioning
neural systems and injured or lost body parts has focused on restor-
ing function using drug treatments, cell therapy®>?* and genetic
engineering®*®. In the past 50 years, electrical neuromodulation has
considerably broadened the spectrum of strategies for restoring neu-
ral signal-transduction functions through the use of bio-interactive
prostheses®*? (Boxes 1 and 2). This technology has contributed to
the rehabilitation of patients with neurological conditions such as
paraplegia®, quadriplegia®™ and limb amputations®.

Bio-interactive prostheses are engineered to bridge the gap
between human tissue and prosthetic effector devices in an ordered
structure that mimics that of the biological nervous system. These
sophisticated prostheses incorporate high-level, mid-level and
low-level controls, which are each important in ensuring efficient
interaction between the user and the prosthesis®. The overall sig-
nal communication loop is realized through a hierarchical control
scheme that reflects the way in which biological nervous systems
process signals and enables rapid responses to environmental
changes while preserving device stability and functionality. An
overview of these control strategies is provided below, along with

spinal cord. By using machine learning to analyse kinematic and
EMG data, continuous locomotion can be predicted and appropriate
signals can be conveyed to the spinal cord to form a closed-loop
system (see the figure). This approach, which includes brain-signal
recording and epidural electrical stimulation, has shown promise

in restoring movement after spinal cord injury in rodents and
non-human primate models'’. Voluntary locomotion was restored in

animals by using a closed-loop system with epidural stimulation and
drug intervention'®???, In people with spinal cord injuries, continuous

decoding of EMG and brain signals, correlated with three-dimensional
10,15

body kinematics, aids in restoring voluntary walking
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brief details of the signal conditioning or modulation used in each
approach.

High-level controls

High-level controls detect the user’s electrophysiological signals via
methods such as EMG, EEG or electroneurography and translate them
intocommands sent to the prosthesis. This level of control s crucial for
both capturing and interpreting the user’s intentions. High-level con-
trolsalso encode externally sensed stimuliinto electrical signals, which
enable the user to perceive these stimuli as natural sensory feedback
through their neural pathways.

Thus, the essential function of high-level controlsinaconventional
prostheticoperating systemisinteraction with the user. This functionis
mediated by translation of the complex natural signals passed between
the user and prosthesis into a format that can be interpreted by the
prosthetic to enable the user’s intended operation. Computational
methods are used, along with components such as neural electrodes,
signal filters and signal generators, to process very large amounts
of unstructured data and extract meaningful information into the
biologicalinterface.

Operation of a prosthetic device typically starts with decoding
the user’s physiological signals. EMG signals®* originate from the
electrical activity of muscle and provide direct relationships with
motor intentions, whereas brain signals (detected by EEG** or
electrocorticography**) and peripheral nerve signals (detected by

Nature Reviews Electrical Engineering


http://www.nature.com/natrevelectreng

Review article

electroneurography®~*") provide motor-related neural signals that
are associated with movement planning and execution. High-level pro-
cessing of these electrophysiological signals is typically mediated by
either direct control or pattern recognition-based control. Inthe direct
control approach, motor signals are mapped directly to prosthetic
control signals on the basis of measurable features (in, for example,
EMG traces). Parameters such as impedance or torque that produce
either binary (on or off) outputs or proportionally modulated outputs
can be determined with a direct control approach**. This approach
is computationally efficient and provides rapid responses to a user’s
volitional motor commands. Nonetheless, reliance on simple signal
metrics oramplitudes might not effectively capture the non-linear fea-
tures of neuromuscular systems. Toaddress this limitation, researchers
use biomimetic signal processing to extract additional features. For
example, machine learning can be used to derive biomimetic models
that approximate a realistic physiological state*** and enable pros-
thetic control signals to be more accurately mapped than is possible
using electrophysiological signals alone. Even with this capacity, direct
control cannotreflect variationsin user intent and is sensitive to noise,
one consequence of which is the need for frequent recalibration.

The patternrecognition-based control approach extracts arange
of representative features (such as event timing or frequency) from
multichannel electrophysiological recordings. Extracted features
are analysed using classifiers that infer the user’s motor intentions.
The patternrecognition control approachis more commonly applied
to EEG and electroneurography signals (which are not always tightly
linked to muscle activity) than to EMG signals. Early pattern recog-
nition control systems used heuristic rule-based classifiers such as
finite state machines*** and decision trees***’, These methods rely

on predefined rules to categorize electrophysiological signals and
translate them into corresponding prosthetic movements. Although
these methods are effective for identifying fixed sets of patterns, they
generate inflexible classification models and therefore have limited
ability to capture the full range of user intentions. To overcome these
limitations, machine learning classifiers have been developed that
can recognize complex patterns in electrophysiological signals after
training on extensive datasets. Supervised training classifiers such as
support vector machines®>”, linear discriminant analysis®*** and other
mechanisms>** can classify new signals by comparing their features
with those of representative datasets. These machine learning classi-
fiers have shown promise for increasing the accuracy and adaptability
of signal interpretation. However, pattern recognition systems typi-
cally require extensive training and remain sensitive to inter-session
variability and environmental disturbances’®.

High-level control systems can also process sensory feedback
in the afferent pathway. High-level sensory signal processing begins
with the collection of external stimuli from multiple sensors embedded
in the prosthesis, followed by the extraction of spatio-temporal ana-
logue signals and their encoding as electrical signals. High-level control
uses patterned electrical pulses to map the resulting encoded sensory
data onto the neural interface with the user. This process depends on
the part of the body and the type(s) of sensory input, and provides
the user with detailed and accurate feedback'""*°. These signals are
designed to stimulate the user’s sensory nerves in a way that provides
biomimicry when perceiving stimuli and generating aneural response.

Unlike motor signals, which are mainly under the user’s conscious
control, sensory information remains largely unprocessed and in the
form of continuous analogue signals. As a result, complex pattern

Box 2 | Bidirectional bio-interactive prosthetics

Even for a bio-interactive prosthetic that is capable of precise motor
control, precise movement cannot be achieved without sensory
feedback. Electrophysiological signals drive the movement of the
prosthesis, but sensory signals are important to enable the user
to determine the consequences of this movement®**?**, Sensory
feedback in biological limbs conveys information not only from
outside the body (about interactions with objects, such as pressure
and texture) but also from within the body (such as movement and
position). Thus, combinations of motor signals and somato-sensory
signals provide the information that is essential for precise control.
When prostheses do not provide such information, the user
must rely on visual feedback to control them. For this reason, a
prosthesis system that is designed to restore locomotion and enable
manipulation of objects requires bidirectional communication of
sensorimotor information to coordinate actions effectively.
Bidirectionally interactive prostheses not only decode the
user’s intentions with regard to movement but also deliver sensory
feedback. For example, one type of upper-limb prosthesis is
controlled by surface electromyography (EMG) signals, whereas
sensory information is sent to the median and ulnar nerves. This
sensory feedback is delivered by intraneural stimulation, in which
the user must learn to interpret stimulation properties such as
amplitude, pulse width and frequency. Several training sessions
might be required to accustom the user to these feedback signals'™.
This arrangement enables patients to control the force applied by

the prosthesis and to handle different types of object; object size and
compliance are differentiated by tactile and proprioceptive feedback,
rather than by relying on visual or acoustic feedback. Tactile feedback
alone is insufficient for position control and proprioceptive feedback
alone is inadequate for force control, but the combination of both
types of feedback enables the user to precisely control the prosthesis
and restores dextrous and agile movement. Moreover, bidirectional
feedback helps reduce phantom limb pain (the sensation of painina
missing limb) by addressing the absence of sensory feedback from
the lost part of the limb to the brain?*??®. When sensory feedback
is provided through a bio-interactive prosthesis, patients report
increased confidence, considerable relief from neurological pain and
improved functional outcomes®'¢"?#-229,

Interest is growing in applying neuromorphic approaches
to neural prosthetics. For example, a neuromorphic system has
been used to connect two neuronal populations in vitro, which
enabled bidirectional interaction through a spiking neural network
(SNN)*°. This model demonstrates the potential of all-hardware
neuromorphic prostheses to reconnect neural networks. Additionally,
a neuromorphic human reflex model allowed amputees to
handle 47% of the typical neural information levels of healthy
individuals®'. Artificial synaptic devices have also achieved biological
sensorimotor® and proprioceptive' feedback loops without
extensive computation.
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recognition is not necessary and direct control is sufficient for trans-
mitting this information. Direct control signal modulation rules can
beapplied to encode sensory signals into neural signals by first simply
defining a sensory perceptual region in the corresponding impaired
area’””%_ Early attempts at the restoration of sensation focused on
adjusting theamplitude, frequency and pulse width of stimulation®**%¢!,
However, these methods sometimes led to paresthaesias due to
the non-natural or excessive activation of nerve fibres. Therefore,
more-advanced biomimetic simulation models have been proposed
to emulate the spatial distribution and temporal dynamics of neural
spikes for each type of sensory receptor. Several remarkable biomi-
metic simulation models have been developed for the palmar surface
of the hand (TouchSim®?), foot sole (FootSim®), retina (Virtual Retina®*)
and cochlear hair cell auditory-nerve fibres®. Biomimetic sensory
restoration improves both prosthesis functionality and overall user
experience, which can make the prosthesis feel like a natural extension
oftheuser’sbody. However, the signal-encoding processes required to
provide naturalsensory feedback incur amassive computational load®.

Mid-level and low-level controls

Mid-level controls are responsible for both precise signal transmis-
sionto the effector and accurate acquisition of signals that represent
sensory information from sensors, whereas low-level controls are
responsible for the execution of motor commands and the perception
of external stimuli.

Mid-level and low-level controls for the processing of motor and
sensory signalsin conventional bio-interactive prostheses are vital for
precisely and accurately executing the control commands generated by
high-level signal processing. Motor execution steps are then planned
according to biological kinematic models to emulate natural motor
behaviours. In a direct control scheme, a high-level controller calcu-
lates these dynamic motor parameters and transfers thisinformation
tomid-level and low-level controls, which perform forward-kinematics
calculations®. By contrast, in pattern recognition-based control
approaches, the high-level system identifies a particular motion
category (for example, walking, standing or sitting) and leaves the
mid-level and low-level controllers to execute the structured actions
andsteps required to generate this motion®®, For instance, in lower-limb
prostheses, pattern recognition-based control recognizes cyclic gait
patterns, whereas mid-level and low-level controls generate com-
mands for continuous movement. These commands typically require
real-time feedback about the internal state of the prosthesis to verify
that the actual motion matches the user’s intended trajectory. As an
example, echo control exploits the phase-delayed mirror symmetry
of leg movement during walking. This system records the position
and trajectories of the intact limb, and then applies a phase delay and
scaling before replaying them on the assisted limb®*’°. However, given
that the prosthesis simply repeats the contralateral limb’s motion auto-
matically with atime delay, this method might not fully represent the
user’s intention. Therefore, complementary limb motion estimation
hasbeen adopted torestore natural limb motion. This method analyses
the motion of the non-assisted limb to infer the intended motion of
the contralateral assisted limb, and then maps this information onto
areference trajectory for the prosthesis’.

Additionally, in upper-limb prostheses, mid-level and low-level
controls adjust motor commands in real time based on sensory
feedback and motion planning algorithms that use Kalman filters or
machine learning algorithms to estimate systemstates’>’>. These com-
mands can preforma prosthetic hand to grasp an objectand maintaina

stable grip without slipping™. Also, sharing motor operating informa-
tionwith asensor canenable the design of commands that extend the
armto anobject, release an object and pause for appropriate intervals”.
These controls perform real-time monitoring and adjustment of the
operation status of the prosthesis. Sensors embedded in the pros-
thesis continuously provide feedback on various parameters such
as joint angles, velocity and force. However, the raw somato-sensory
signals from these sensors are often noisy and require substantial
preprocessing to render them usable. Signal processing techniques
such as fast Fourier transform and wavelet transform are used to
extracteither time-domain or frequency-domain features from these
signals 7%, The status of the prosthesis can then be defined using
proportional-integral-derivative control, which is widely used to
ensure smooth and accurate movements of the prosthesis’*°,

In sensory bio-interactive prostheses, mid-level and low-level
controllers can preprocess external stimuli to reduce the computa-
tional burdenonthe high-level controller. The raw signals produced by
external stimuli are encoded by applying filters, adjustments or other
processing steps depending on the sensor’s modality and performance
parameters (such as resolution and sensitivity). However, biomimetic
methods that fully replicate neural activity based on traditional von
Neumann computing architectures require heavy computation to
encode raw signals®®. Moreover, although conventional signal pro-
cessing in prosthetic control systems is effective in bridging the gap
betweenthe user’sintention and executed action, thisapproach often
resultsinfeedback thatis delayed and lessaccurate than that provided
by abiological nervous system®**, Thus, the control methods usedin
conventional bio-interactive prostheses can be regarded asrigid inter-
preters of biological signals. They are not capable of connecting the
user and prosthesis inan embodied manner by enabling bidirectional
communication based on wholly biocompatible signal processing
methods.

Neuromorphic signal processing

Theneuromorphicapproach hasbeenadoptedinbio-interactive pros-
thetic control systemstoboth reduce power consumptionandreplicate
biological neural activity in an intact yet computationally simplified
manner that overcomes the drawbacks of conventional prosthetic
control architectures.

In direct control systems, neuromorphic models often rely on
equations that reflect biological neuron dynamics®* to convert
the analogue sensor outputs into spiking neural signals that enable
event-driven, asynchronous and parallel signal processing. Typically,
embedded software calculates time-dependent changesinasimulated
membrane potential and triggers spikes when a threshold is reached.
In pattern recognition-based control systems, SNNs and spiking
signal conversion circuits®* are used to mimic hierarchical neural
connections’®’, The SNN computing parameters require exposure to
large training datasets to enable themto correlate sample input signals
with accurate prosthetic command patterns. Therefore, SNNs not
onlyimprove the accuracy of patternrecognition but alsoadapttoan
individual user’s neural spiking patterns’>”* and time-varying biological
activities based onadaptive learning’*. Furthermore, development of
SNN hardware techniques into neuromorphic prostheses inindustrial
and academic research settings could further improve the efficiency
of signal processing and decrease power consumption®, Inasimilar
vein, another strategy focuses on using artificial nerve systems that
mimic the functional characteristics of biological synapses. These
systems are expected to simplify signal processing compared with
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conventional approaches that rely on externally modelled neuromor-
phic software. Building on this approach, artificial nerve systems that
are capable of mimicking and seamlessly interfacing with the biologi-
calnervous system are anticipated to replace conventional prosthetic
operating systems.

Whereas conventional bio-interactive prostheses have already
reached technological readiness levels of 6-9, neuromorphic prosthe-
ses (especially those using artificial nerve systems) remain at an early
stage of development (technological readiness levels 2-4). Artificial
nerve systems, in particular, are still primarily at the concept valida-
tion and fundamental experimental stages. Although artificial nerve
systems operate similarly to direct control-based methods, which
likewise bypass neural signals and have aminimal computational load,
the goal of artificial nerve systems is to provide a fully hardware-based
neuromorphic signal processing bypass that connects the user directly
with the bio-interactive prosthesis and mimics the principles and
functions of biological nerve systems.

Artificial nerve systems

The advent of artificial nerve systems composed of artificial neurons
and artificial synapses that enable efficient data processing using
simple biomimetic device functions and circuit configurations has
introduced a new paradigm in prosthetic technologies'". Artificial
nerve systems use SNNs and other hardware to drive biological activity
by emulating the spike signal-transduction and signal-transmission
behaviours of biological nerves as well as the plasticity of biological
synapses. These devices aim to provide seamless integration with the
human nervous system owing to the similarity of their signals to those
of biological systems. Artificial nerve systems that are intended to
interface directly with biological nerves also eliminate the need for
additional signal processing (asis required in conventional prosthetic
control systems).

The close connectivity of artificial nerves resultsin more-natural
motion control and more-accurate sensory feedback than is possible
with conventional signal processing. For this reason, artificial nerves
are suitable for bio-interactive prostheses that require high energy
efficiency, closed-loop operation, portability and stability. These char-
acteristics enable their daily use in the form of on-skin orimplantable
electronics without the need for bulky external power sources.

Artificial synapses

Artificial nerves are connected to each other and to biological tissue
by artificial synapses that emulate the functions and responses of
biological synapses'®'®?”%, These artificial synapses are designed to
replicatethe plasticity of biological synapses, whichrefers to the capac-
ity to modulate signal-transmission efficacy (also known as synaptic
weight) in response to experience. Synaptic plasticity is essential for
the accumulation of memory and learningin biological systems and is
characterized by both the potentiation (strengthening) and depression
(weakening) of trans-synaptic signal-transmission efficacy inresponse
to neural activity patterns® %,

Synaptic plasticity has been successfully emulated by devices
with two-terminal and three-terminal structures that use various
working mechanisms, including charge-trapping'®'**, formation
of conductive bridges''°® or ferroelectric tunnel junctions'* ',
ion migration"°"? and electrochemical reactions!®'??$71011137116 [gp
gel-gated organic synaptic transistors (IGOSTs) are an especially
promising technology. When subjected to an electrical field, ions
in a gel can migrate and form electric double layers on the polymer

channel surfaces or can even permeate and dope the channel. IGOSTs
have demonstrated various kinds of synaptic responses, including
long-term plasticity (LTP), short-term plasticity (STP) and the linear or
symmetrical modulation of synaptic weights'°>'°*_ LTP is exploited
to achieve learning and memory, whereas STP is exploited for imme-
diate responses and is considered a crucial feature of bio-interactive
sensory and motor prostheses'®'*”8, Electric double layers are mostly
exploited for STP-dominant operations, whereas electrochemical
doping endowed by high volumetric channel capacitance is mainly
exploited for LTP-dominant operations and enables both low-voltage
operation and mimicry of biological synaptic mechanisms™’. IGOSTs
can exhibit STP and LTP simultaneously, depending onion movement
and electrochemical doping parameters. The operational reliability
and functional versatility of IGOSTs render them particularly suitable
for usein artificial nerves.

In artificial synapses, potentiation and depression are typically
induced by applying voltage spikes that emulate presynaptic action
potentials. The number and frequency of input spikes can alter the plas-
ticity of the output signal of artificial synaptic devices. When a voltage
spikeisapplied to the gate electrode of a synaptic transistor suchas an
IGOST, ions that have the same charge as the spike will move towards
the channelwalland formanelectric double layer. This processinduces
charge carriersinthe transistor channel and thereby maintainsits con-
ductance during the period of electric double-layer formation, which
yields STP"®"°, Under specificinput conditions, ions can penetrate the
activelayer and induce additional charge carriers; the trapping of these
ions in the active layer establishes LTP, which is maintained until the
ions are de-trapped, even after the cessation of stimulating spikes’*'".
LTP characteristics can be exploited to achieve both localized memory
and processing in memory, which together enable the preprocessing
of signals used in bio-interactive prosthesis and cannot be achieved
with STP alone. The synaptic plasticity responses of IGOSTs can be
precisely regulated toimplement diverse functions. For instance, the
STP property is required to obtain immediate response to sensors
and biological signals, whereas the LTP property is required for signal
manipulation based onlocalized memory and subsequent processing.
Several methods have been used to modulate the properties of artificial
synaptic devices, including modifying the semiconducting material to
meet the desired dynamic conductance range'**'* and controlling the
microstructure of the semiconducting channel layer to modulate the
duration over which conductance is retained'**'?,

Artificial neurons

Artificial neurons are the electrical component of an artificial nerve.
Theartificial neuron generates spike signals in response to integrated
spatio-temporal inputs derived from sensory receptors or other neu-
rons and then transmits this signal through artificial synapses between
neural networks. This biomimetic approach enables artificial neurons
to effectively replace damaged nerves and thus to provide the core
element of next-generation bio-interactive prostheses.

The generation of spike signals in artificial neurons closely mim-
ics the consecutive spiking behaviour of neural signals in the spiking
frequency range of biological neurons (<200 Hz)'?. Several artificial
neurons have been implemented using a ring oscillator that consists
of multiple transistors'>>'**, but the use of numerous transistors and
passive electronics yields bulky circuits that are not suitable for direct
interfaces with biological nerves. By contrast, circuits that comprise
components commonly used in artificial synapses (such as OECTs),
along with capacitors and resistors canyield artificial neurons that can
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both generate and propagate action potentials, and thereby simulate
theelectrical activity of neurons''?°, For instance, when the number of
appliedelectricalimpulses (the input signal) exceeds agiventhreshold,
the artificial neuron generates a voltage spike that propagates along
its axon, similar to the action potential of a biological neuron. This
process in an artificial neuron emulates the integrate-and-fire model
of abiological neuron'”.

Artificial neurons can also operate using the threshold concept
andtheall-or-none law to determine whether aninput stimulus should
be included in signal processing. In this model, continuous stimuli
accumulate and result in consecutive output spikes once a predeter-
mined thresholdisreached, acharacteristic that effectively filters out
noise. The signals fromartificial neurons are integrated with artificial
synapses to enable the incoming information to be summed both
temporally and spatially to form aninput signal for artificial neurons.
This integration process enables external stimuli to be effectively
processed concurrently. As aresult, the neuron responds to complex
input patterns and adjusts its output signals according to the cumu-
lative activity of its synapses, which in turn determines whether the
operating threshold voltage is exceeded and, therefore, whether the
output signalis fired.

Artificial nerves
Artificial nerve systems represent a considerable advance in bio-
interactive prostheses. Compared with conventional bio-interactive
prosthetic systems, artificial nerve systems offer efficient and adaptive
signal processing by mimicking biological event-driven signal trans-
mission between the CNS and the PNS through both efferent (away
fromthe CNS) and afferent (towards the CNS) pathways. Bidirectional
signal processing enables neuromorphic hardware to provide both
somato-sensory feedback and the recovery of natural motor behaviour.
Unlike traditional prostheses, which convert motor commands
or detected sensory signals into pulsed digital information to stim-
ulate nerves, artificial nerves generate an asynchronous spiking
signal. Whereas digitized signals follow a fixed rhythm or clock, neu-
romorphic systems generate spikes (action potentials) irregularly and
non-periodically, similarly to biological systems. These systems fire
spikesinresponse toinputstimulirather than at predeterminedinter-
vals, which enables event-driven operation. Moreover, asynchronous
spiking enables the encoding of additional information in the timing
and pattern of spikes, which enables the integration of sensing and
processing functionalities. Insharp contrast, conventional hierarchical
systems require extensive software-mediated signal preprocessing and
interpretation to provide meaningful feedback to the user’®7”7%80128129,
Moreover, artificial nerves also reduce energy usage by responding
only when an event occurs, unlike conventional systems that con-
tinuously sample and process data. Thus, neuromorphic systems offer
considerably improved energy efficiency.

Artificial afferent nerves. In the afferent pathway, artificial nerve
systems can both detect spatio-temporally patterned stimuli and
implement event-driven operations. An artificial receptor such as a
neuromorphic sensor or electronic skin (e-skin)*°"* linked to arti-
ficial neurons can convert incoming stimuli to spike signals, which
are transmitted via artificial synapses that are adapted to recognize
spatio-temporal patterns. These spatio-temporal patterns can easily
be analysed to accurately recognize sensory information and provide
meaningful feedback. Artificial nerve systems replicate biological
afferent nerve pathways by exploiting the functional characteristics

of artificial synapses and processing the external stimuli signals from
artificial sensory receptors (Fig. 2a). For example, the linear modulation
of signal frequency converts sensor datato signals that modulate neural
activity. This process conveysinformationabout the intensity of a sensa-
tion to the brain by varying the number or firing patterns of generated
action potentials, in amanner that mimics biological adaptation.

The capacity tointegrate tactile sensations into a bio-interactive
prosthesis gives its users a tangible way to comprehend the world.
Human tactile receptors include slow adaptation and fast adaptation
types'***, Mimicking these two different responses implements a
human-like sensory system that can detect pain as well as objects. Such
systems are crucial for both achieving safety in daily life and providing
lifelike functionality. The presence of stimuli that are likely to cause
damage, such as high temperature'*>'*¢ or local high pressure'”*%, ena-
bles artificial nerves to generate a nociceptive warning. Harsh stimuli
reach the signal threshold of the artificial nerve more quickly than
mild stimuli, and therefore provide an early warning of potential harm.
Additionally, the plasticity of artificial synapses enables the memoriza-
tion of tactile sensations, which enables the output signals from the
artificial nerve to shoot up rapidly again if the same noxious stimuli
occur during the period that the synaptic device retains its memory.

Artificial synapse plasticity also provides adaptability and facili-
tates the formation of haptic memory. Haptic memory reduces com-
putational loads by enabling the preprocessing of sensory signals
within the trained memory. Therefore, neuromorphic prostheses can
learn specific tactile patterns, such as English character writing™® or
various stimuli®**%, and will respond with appropriate outputs in an
easily recognizable form.

Other human senses can also be mimicked in artificial afferent
nerves. Optical sensing can be achieved using an array of pixels that
convert light stimuli to electrical signals and act as optically sensitive
artificial nerves. Each pixel is integrated with a synaptic device™™*"*
or photonic synapse™ ™ that directly emulates synaptic character-
istics when stimulated by light, including by integrating temporal
patterns of stimuli into each pixel that correspond to image-related
information. For auditory sensing, spatio-temporal signal process-
ing and noise filtration are crucial for reliable operation in the real
world. These processes can be effectively implemented using artificial
synapses integrated with triboelectric nanogenerators'”"**, For gus-
tatory and olfactory sensing, which both rely on chemical detection,
artificial chemical receptors can be trained by exposure to appropriate
reactants. The artificial nerve can then discriminate between input
signals according to the type and concentration of chemicals pre-
sent and respond by modulating the frequency of output signals"*'°.
These sensing primitives are also important in biomolecule sensing
by visceral artificial nerves.

Rapid reactions to harmful situations can be obtained with an
artificial nerve system that mimics the functions of a biological reflex
arc.Such asystem can be obtained by the integration of artificial affer-
ent (sensory) nerves with an artificial efferent (motor) nerve'® that
stimulates the biological motor nerves, thereby generating motionin
response to external stimulation. One such artificial mechanosensory
nervesystemincludes asensor that detects applied pressure and acts
asamechanoreceptor. Artificial nerves convert the detected informa-
tion into spike-shaped action potentials, which are sent to a synaptic
transistor where they are processed to generate postsynaptic output
signals. The synaptic transistor interfaces with a biological motor
nerve, thereby forming a hybrid reflex arc that can activate an actua-
tor, such as an isolated insect leg, in response to external pressure'.
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Fig. 2| Artificial nerve systems. a, Configuration
ofan artificial afferent nerve interfaced with a
biological system. Artificial sensory receptors
sense incoming stimuli as electrical signals, which
are converted into spike form by artificial neurons
(step1). The artificial synapse accumulates these
signals according to their sensory information
(step 2). The postsynaptic signals are converted into
action potentials and transmitted to the biological
system (step 3). Panel aadapted with permission
fromref.18, AAAS. b, Configuration of an artificial
efferent nerve interfaced with abiological system
(arodentleg). Physiological signals are converted
into several consecutive presynaptic voltage spikes.
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By mimicking natural reflexes, this system demonstrated the first use
of artificial afferent nerves in aneural prosthesis.

Artificial efferent nerve. Artificial nerve systemsin the efferent pathway
offer the distinct advantage of exploiting synaptic plasticity to directly

mimic the natural motion of biological effectors (Fig. 2b). This resultis
achieved by using artificial synaptic devices that emulate the synaptic
plasticity of the neuromuscular junction in biological motor nerve sys-
tems. Conventional FES applies discrete electrical pulses of a constant
amplitude, which induce an abrupt and drastic muscle contraction.
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Difficulty in predicting the force of this muscle contraction can cause
unpredictable twitching and cramping, which cause discomfort to the
FES user”. By contrast, biological skeletal muscle contractions are cat-
egorized into three types: twitch, summation and tetany'®. Low fre-
quencies of action potentials cause muscle twitches. As the frequency
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summation, which smoothly changes the muscle response to a con-
tinuous and strong contraction. A further increase in the action poten-
tial frequency induces the muscle to contract with its maximum force
(a tetanic contraction), which can take some time to relax after the
stimulation is withdrawn'®>. Therefore, FES signals require additional
processing to gradually ramp the voltage during both the onset and
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Fig. 3| Artificial nerves for future bio-interactive prostheses. a, Ina
conventional sensory processing prosthetic system, sensors simply convert
external stimuliinto electric signals, whichincurs a huge costin data
transmission. In artificial nerves, in-sensor processing architectures preprocess
information, which reduces the cost of data transmission. b, The biocompatible
signals generated by an artificial nerve mimic biological neural activity and
synaptic plasticity, and are controlled by feedback loops. Modulation of neural
activity occurs via the delivery of negative feedback to biological nerves, which
recovers the signal loop and maintains the stable status of the body (red arrow).

Closed-loop feedback inside the artificial nerve enables it to precisely adjust its
operation (blue arrow). ¢, Artificial nerves made of stretchable semiconductors,
conductors and dielectrics enable wearable orimplantable applications owing
to their ability to both conform to and maintain adequate adhesion to biological
tissue. The biocompatible and stretchable encapsulant must also confer
operational stability in the in vivo environment. EPSP, excitatory postsynaptic
potential; /, output of intelligent sensors in in-sensor processing; R, responsivity
ofintelligent sensors; S, output of aconventional sensor array.

deactivation of stimulation. By contrast, theinherent potentiation prop-
erty of artificial nerves enables the transmission of ramping signals and
thereby increases both natural motion and patient comfort”. The gradual
increaseinmuscle force response achieved by artificial nerves also elimi-
nates the need for bulky electronic components such as functiongenera-
tors. A single artificial synapse enables the actuator'®*'** to implement
movementsanalogous to those foundinbiological systems’®. Biomimetic
movement control cannot be achieved easily by conventional transistors,
which only have binary (on and off) states. However, a light-responsive
motor system composed of asoftionic polymer-metal composite actua-
tor that contractsartificial musclesin response to optical stimulation can
provideagraded response without the need for additional components.
This approach has been incorporated into an artificial nerve system
consisting of anartificial synapse integrated with a photodetector®. This
artificial synapse canalso respond tobiomolecules, suchasacetylcholine,
whichinduce movement of the soft actuator'®.

The combined use of two or more artificial synapses can increase
the sophistication of movement responses. For instance, parallel pro-
cessing using both STP and LTP synaptic devices led to an increase in
the displacement of chronic actuation that simulated biological condi-
tions such as muscle growth'® and muscle memory'”. Each effector was
operated viaanartificial synaptic device, which obviated the need fora
conventionalmemory chip to control the whole prosthesis system. Also,
theintegration of multiple artificial synapsesintoarobotic hand enabled
coordinated finger movements'*®. The event-driven properties of arti-
ficial nerves enable spatio-temporal signal summation, which canyield
various motor outputs that correspond to complex stimulating patterns.

Reciprocal inhibition via integrated artificial synapses can imple-
ment lifelike motion in an actuator'®. By connecting and controlling a
softactuator using both excitatory and inhibitory synaptic devices, the
speed, range and direction of the actuator’s motion can be precisely regu-
lated. Implementation of these responses in conventional computing
systemsrequirescomplexarchitectures or additional processing steps””’.
Therefore, the use of artificial nerves minimizes device complexity.

Artificial multi-synapse systems can also be applied to biologi-
cal muscles®**”, Artificial efferent nerves have been connected to
both extensor and flexor muscles using a soft hydrogel electrode.
Adjusting the frequency of presynaptic spikes to the artificial nerves
enabled precise control of the muscle’s movement'. Additionally,
control of muscle extension and flexion has been implemented using
pre-recorded electrophysiological signals from the primary motor
cortex (M1)” (Fig. 2b). This system represents the first demonstration
of synchronized movement achieved using artificial efferent nerves
and provides a basis for the future development of bipedal walking
locomotion controlled by artificial synapses.

Synchronized movement requires that artificial efferent nerves
receive feedback about their response from effectors such as prosthetic
limbs or their restored biological counterparts. For a conventional

system, the detection of internal device status and the fine adjustment
ofitsmovements to compensate for errors requires complicated signal
processing and computing of inputs from multiple sensors. However,
forartificial nerves, sensors can be integrated into the system itselfand
canboth detect stimuliand provide feedback during signal processing.
Asanexample, proprioceptive feedback from mouse leg muscles con-
nected toanartificial efferent nerve can be exploited to control the sig-
nal potentiation ratioin the artificial synapse and thereby prevent the
muscle from developing unwanted tetanic behaviour®. This feedback
mechanismenabled the artificial nerve to modulate motor behaviour
inparalysed mice. The mice regained not only their leg movement but
also the ability to walk and run® (Fig. 2b).

Future technological goals

Current research mainly focuses on artificial nerves that exploit neuro-
morphicelectronics to enable them tocommunicate with prostheses.
However, this concept is still in its early stages of development and
several important challenges remain to be overcome. In particular,
considerableresearchisfocusing onthe development of bio-interactive
prostheses that canintuitively emulate natural biological functions.

Reduced complexity of signal processing

Increasing the precision of paralysed or artificial imb movements
requires the development of high-resolution sensors that can detect
high-density external stimuli and neural signal recording sensor arrays.
These arrays must collect signals from many channels (Fig. 3a). Electro-
physiological signals areinanalogue formand are difficult tointerpret
owing to their small amplitude and noise, which makes them vulner-
able to attenuation and the accumulation of additional noise (such as
thermal noise) during signal transmission. Moreover, when signals
collected at high sampling rates are transmitted from many channels
to a centralized computing unit, the resulting transmission of large
amounts of data can result in latency, insecurity and high power con-
sumption'’. Additionally, processing these analogue signals using
conventional von Neumann digital computing units involves numerous
steps of signal conversion and transmission, which further slows the
process and increases energy requirements.

Processing-in-memory methods, such as in-sensor processing
and near-sensor processing, could overcome this disadvantage. These
methods process and compress data within or close to the sensors
before transmission'”* (Fig. 3a). By reducing the noise that accumulates
during signal transmission and transmitting preprocessed and com-
pressed data, these approaches canreduce both latency and the energy
cost of substantial data transmission'”*. Oneintelligent sensor network
thatemulates biological sensory systems directly processesincoming
analogue signals without first converting them to digital form'. This
intelligent system enables neuromorphic localized signal processing,
which reduces latency, power consumption and circuit complexity.
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Intelligent systems with intensity-dependent and time-dependent
plasticity characteristics enable the direct preprocessing of sensory
information at a low-level stage, unlike conventional sensors that
merely convert the intensity of stimulationintolinear electrical signals
for subsequent processing by back-end memory and processors™. The
front-end processing units perform preliminary low-level data pro-
cessing, including noise and artefact reduction, filtering, background
suppressionand feature enhancement. The preprocessed dataare then
transmitted to back-end signal processing units for high-level pro-
cessing, which enhances the computational efficiency of post-signal
processing'’®.

Near-sensor or in-sensor signal processing implemented by neuro-
morphicprocessors composed of artificial synapse arrays can provide
an interface between sensors and post-processors that enables the
preprocessing of the sensor’s analogue signals at low power without
complex and unnecessary signal conversion. Artificial nerves have
demonstrated the potential for near-sensor and in-sensor process-
ing of external stimuli, which represents a foundational step in the
development of intelligent artificial nerve systems that are capable
of processing complex biological signals. For example, an artificial
mechanosensory nerve array composed of pressure sensors, artificial
neurons and artificial synapses can form receptive fields where syn-
apsesintegrate the signals from multiple neurons for preprocessing’®.
This near-sensor signal processing approach has shown potential for
improving the accuracy of Braille recognition compared with systems
that do not use artificial synapses. Another in-sensor neuromorphic
processor that comprises vertically integrated pressure sensors and
memristors carries out preprocessing of analogue signals from the
pressure sensors in real time, which reduces noise in tactile patterns
and detected edges and results in superior contrast enhancement,
noise reduction and improved pressure pattern recognition rates'”’.
Optoelectronicin-sensor processing thatemulates the functions and
hierarchical connections of photoreceptors and bipolar cells in the
retina enables real-time primary processing of visual information that
results inimage contrast enhancement and noise reduction'””%, More-
over, multimodal sensory systems that simultaneously receive sensory
information from various sources can exhibit improved recognition
accuracy and reduced system complexity compared with single-sensor
systems'”’ aswell as anincreased dimensionality of the tasks that canbe
performed™. These near-sensor and in-sensor neuromorphic sensory
processors contribute to the development of advanced bio-interactive
artificial nerve prostheses by providing bothincreased signal process-
ingefficiency and improved perception accuracy in relation to sensory
information''*’,

Even in devices that use in-sensor and near-sensor signal pre-
processing using intelligent multimodal sensors, the use of conven-
tional back-end processors that rely on von Neumann architectures
for high-level tasks can still hinder furtherimprovementsin processing
efficiency. The use of neuromorphic devices to perform both low-level
and high-level signal processing can considerably simplify circuit
designandincrease the device integration density. For instance, images
can be preprocessed by front-end optoelectronic memory arrays
that emulate the functions of the biological retina and then routed to
back-end high-levelimage processors that use in-memory processing
units, thereby increasing the speed and reducing the energy cost of
signal processing™°.

Considerable research has been conducted on near-sensor and
in-sensor processing systems that detect external multimodal stimuli,
butstrategiestoincrease the efficiency of processing of complex neural

signals remain largely unexplored. This gap must be addressed in the
development of advanced, high-functionality, motor neural prostheses
and bidirectional neural prostheses.

Communication with the body

Although bidirectional signal transmission has been achieved in
bio-interactive prostheses (Box 2), participants must still undergo
multiple learning sessions to map the artificial stimulation onto the
sensory information frombiological nerves'>"**'®! The biological nerv-
ous system can adapt to new sensory mappings, but whether people
with amputations or spinal cord injuries can learn (from scratch) the
extensive and complexinformation required to control each degree of
freedom of movement of a prosthesis remains untested. To solve this
problem, amethod should be developed to enable communication
between the body and the prosthesis without the need for additional
signal-transducing devices or circuits. This advanced capability would
open possibilities for futureimprovements by integrating increasingly
naturalandincreasingly intuitive control mechanisms. In such systems,
feedbackloops enable precise control of the prosthesis by continuously
sensing and responding to the status of both the prosthesis and the
user’s body, to ensure accurate and responsive movements.

Biologically compatible signal transmission. Mimicking of biological
signal transmission is essential to ensure the seamless integration of a
prosthesis with the nervous system (Fig. 3b). This approach results in
intuitive and efficient communication thatincreases the functionality
and usability of bio-interactive prostheses. Researchers have demon-
strated that memristors can exhibit most of the known dynamics of
biological neural systems'®. Specifically, 23 types of biological neural
behaviour have been experimentally demonstrated’®’.

To synchronize the active signal with biological cells, three-
terminal artificial synapses have been created that connect previously
uncoupled neurons by mimicking biological synaptic plasticity'.
Activity-dependent coupling eliminates the need for complex circuitry
attheuser-prosthesisinterface. Moreover, artificial synapses canboth
modulate spiking probability and delay spike generation, capabilities
that closely resemble the functions of biological synapses and therefore
permit the emulation of biological signal-transmission processes. Such
artificial synapses also eliminate the need for the bulky hardware and
complex processing used in conventional approaches’®, and thereby
facilitate the development of advanced bio-interactive prostheses.
Artificial components that areintended to operate in biologically rel-
evant environments and maintain physical, functional and temporal
proximity with biological components must also interact in real time
with biological parts. For example, connectivity with biological cells
could be facilitated by the capacity to directly detect neurotransmit-
ters such as dopamine, which would enable the immediate detection
of biological neural signals'*'8+1%,

Inone proposed conceptual approach, features of the biological
neural network could be ‘copied’ and ‘pasted’ onto a neuromorphic
system to create a hybrid neural connectivity map'®°. The functional
synaptic connectivity map is first extracted from a biological neural
network recorded from a nanoelectrode array’’. This map could then
be transferred to a network of neuromorphic devices, in which each
device stores the connection strength of a corresponding biological
synapse. A similar idea involves recording the connectivity map gen-
erated from a nanoelectrode array and directly imprinting this map
onto memristors, thereby bypassing the extraction process. Although
this concept has not yet been realized, its groundbreaking aim is to
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construct anelectronic brain via the direct engineering of neural con-
nectivity. The structures of such electronic brains could replicate the
functional complexity of neurons by implementing characteristics of
biological neurons, including ion-channel activity, routing and delay.
Thisapproach could eventually generate neuromorphic systems that
function in the same way as biological neurons and are, therefore,
highly suitable for communicating biological signals.

The development of artificial nerves that mimic the characteristics
ofbiological neurons has already achieved a more-natural signal trans-
mission than traditional methods such as FES. By seamlessly coupling
disconnected nervous systems and mimicking the characteristics of
biological neurons, artificial nerves offer a promising avenue for the
development of next-generation bio-interactive prostheses.

Feedback loop communication. Theincorporation ofinternal sensing
of the prosthesis status provides a feedback mechanism that enables
the prosthesis to adjust and adaptin real time, which resultsinsmooth
and continuous movements that closely mimic natural motion patterns
(Fig.3b). A prosthesis that can constantly monitor its own status could
also detect and respond to changes or abnormalities.

Artificial nerves have also been evaluated for control of the body’s
homeostatic functions. In one study, artificial nerves that detected
glucose and insulin levels could regulate a negative feedback loop
necessary for maintaining homeostasis'®®. This advanced capability
enables the continuous monitoring and adjustment of physiological
parameters to ensure that the body remainsinabalanced state. Other
negative feedback mechanisms, such as thermoregulation and blood
pressure regulation, could be fulfilled by a body cooperating with an
artificial nerve.

Proprioception is essential for motor activities such as standing
and walking. Without proprioceptive feedback, locomotion dete-
riorates, muscles can be damaged and interactions between prosthe-
sis users and their environment are suboptimal. Furthermore, a lack
of appropriate proprioceptive response results in clumsy physical
activity'®. An artificial proprioceptor has been designed to detect
leg movements and prevent the over-extension of leg muscles under
the control of an artificial nerve®. This artificial proprioceptor, in
conjunction with anartificial synapse, forms a sophisticated feedback
loop that mimics the natural sensory feedback mechanisms found in
biological systems. This systemincreases the precision and adaptivity
of responses to changes in muscle movement and contraction force,
which helps prevent muscle damage and substantially improves the
user’s ability to perform complex motor tasks such as walking, run-
ning and kicking a ball”. The continuous feedback and adjustment
enabled by this technology could markedly increase the intuitiveness
and naturalness of movement, as well as improving interaction with
the environment.

Importantly, artificial nerves trigger action potentials that travel
simultaneously in both distal and proximal directions”*°. Therefore,
generated proprioceptive feedback and motor neuron activity can
potentially cause signal interference that results in the loss of robust
control. Toavoid the cancelling out of proprioceptive feedback owing
tosignal overlap, the external electrical signal used to generate neuron
activity can be spatio-temporally controlled"’, for example by deliver-
ing a signal that has a sufficiently low amplitude and sufficiently high
frequency to secure excitatory postsynaptic potential. Another pos-
sibleapproachinvolves the regeneration of cancelled proprioceptive
feedback simultaneously upon providing motor signals. Finally, the
action potential signals emitted by artificial nerves must not disturb

any biologically generated signals. The generation of biologically
compatible feedback signals remains an ongoing challenge in artificial
nerveresearch.

Seamless integration and biocompatibility

Artificial nervesthatimplement near-sensor and in-sensor processing
must be positioned as close as possible to the signal source to reduce
data transmission distances, minimize noise and efficiently process
sensory and motor neural signals. As the signal source is on or inside
deformable body tissues, these devices must be both flexible and
stretchable to seamlessly integrate with the body (both externally
andinternally) and to minimize signal artefacts and noise caused by the
host’s activities. Additionally, to ensure stable long-term operationin
bothexternal and internal environments, these devices must be made
of biocompatible materials (Fig. 3c).

Body parts that are critical for movement and sensory detec-
tion, such as the hands and knees, have high degrees of freedom and
undergo considerable stress. Therefore, highly effective and intuitively
functioning bio-interactive prostheses must be composed of highly
reliable materials that can operate stably under these challenging
conditions. Many studies have focused on neuromorphic devices that
combine flexible sensors and memory arrays'*?, but few have described
neuromorphic devices that operate stably under strains exceeding
5% (for reference, depending on its location on the body, the skin can
experience strain of up to 40%'*). Research on sensory synapses for
low-level processing, excluding those that sense strain, is still insuffi-
cient. Specifically, research on stretchable memory arrays for high-level
processing is rare, possibly because memory arrays that are highly
toleranttostrainare challengingto create given that the weights stored
inthe memory arrays have acritical effect on computation. Methods of
increasingstraintolerance include the deposition of one-dimensional
semiconductor and electrode materials in serpentine shapes'®*® and
the use of compensation circuits'*. However, these approaches might
limit miniaturization and increase the complexity of neuromorphic
systems. Analternative ideais to use inherently stretchable polymers
and nanomaterials’”'*>. Polymer blends composed of semiconducting
conjugated polymers and polymers with alow Young’s modulus have
been used as active materials to create stretchable synaptic transistors.
A one-dimensional single nanowire or nanofibril network embedded
in an elastomer matrix demonstrated reliable characteristics under
mechanical strains of up to 100%*77%1°¢, Additionally, a conjugated
polymer with a moderately flexible polythiophene backbone did
not develop cracks even under 100% strain, so a device that uses this
material could operate stably under such conditions'”’.

e-skin devices offer advanced characteristics and functionalities
that traditional complementary metal-oxide-semiconductor-based
electronic devices cannot provide'*. Therefore, e-skin is suitable for
applications in the biomedicine, wearable robotics, healthcare, aug-
mented reality and virtual reality fields. Nevertheless, improvements
arestillneeded in e-skin electrical properties and long-term stability at
the material level, memoryretention at the devicelevel, and integration
density and processing technology at the system level.

Outlook

The development of artificial nerves presents considerable advan-
tages for the field of bio-interactive prostheses. By mimicking the
behaviour of biological nerves, artificial nerves enable more-direct
and more-intuitive operation of prosthetic devices than is possible
using conventional methods. The use of artificial nerves increases the
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Glossary

All-or-none law
The principle that stimulation of a single

Integrate-and-fire model

An input current causes the neuronal
nerve fibre always results in a maximal
response; thus, an increased intensity
or duration of stimulus does not alter

membrane voltage to increase over
time until it reaches a preset threshold,
at which point an output electrical

the amplitude of the resulting electrical impulse occurs and the membrane

impulse. voltage resets to its resting potential;
more-sophisticated versions of this
e-skin model incorporate various adaptation

A type of thin-film device that mimics variables.
the high elasticity of the skin as well as

its sensory receptors and actuators.

accuracy of signal processing, minimizes power consumption and ena-
bles coherent communication. Traditional prostheses often struggle
to provide effective signal matching between biological nerves and the
prosthetic device, primarily because of the inherent complexity of bio-
logical signals and their noisy nature'. This mismatch complicates the
decodingandinterpretation of biological signals and causes difficulty
inachieving precise prosthesis control and adaptive responses™'>'*’,

Artificial nerves reduce the complexity of the processes of decod-
ingandinterpreting biological signals. This simplification canlead to
anincreaseintheaccuracy andreliability of communication between
the prosthesis and the user’s nervous system. By emulating the func-
tions of biological systems, artificial nerves increase biocompatibility
and reduce both errors and power consumption'®?, Near-sensor and
in-sensor processing can also clean up noisy signals and increase the
reliability of signal transmission to the prosthetic device, thereby
increasing the accuracy and responsivity of control. Artificial nerves
thatare designed to be biocompatible and flexible canintegrate seam-
lessly withthe body’s tissues and withstand the mechanical stresses of
movement. Moreover, artificial nerves that communicate with biologi-
calnerves through modalities other than electrical signals could greatly
increase the versatility and effectiveness of artificial nerve systems. For
instance, artificial nerves that detect and interact with biomolecules
such as neurotransmitters, antigens and nucleic acids could facilitate
communicationwith their biological counterparts**°. These expanded
abilities could include reading signals electrochemically?* 2% using
piezoelectric methods®**?% or applying other techniques to detect
biomolecules*®°.

Preliminary results have demonstrated the feasibility of
using artificial nerves for direct communication with biological
systems'®'*?”, This approach could overcome the limitations of cur-
rentbio-interactive prostheses by providing anaturalistic interface that
adapts and respondsto the user’s needs inreal time. The use of flexible,
biocompatible materials further ensures that these devices can oper-
ate stably under the mechanical stresses of daily use. In particular, the
artificial nerve must be wearable orimplantable to enable in-sensor or
near-sensor signal processing, which greatly increases the efficiency of
abio-interactive prosthesis. Thus, all materials used in artificial nerves
must be soft and stretchable. In addition, the materials must have low
cytotoxicity and immunogenicity to avoid long-term adverse effects
when mounted on the skin or implanted in the body®°**””. Encapsula-
tion materials must also be developed that can prevent biofluids from
degrading the performance of artificial nerves without limiting the

mechanical stretchability of wearable and implantable devices, such as
encapsulants based on elastomers with low water vapour transmission
rates and low ionic conductivity.

The aim of using artificial nerves is to move away from purely
mechanical prosthesis solutions and towards seamlessly replacing
the functions of damaged nerves while preserving the body’s natural
form and function. The goal of this approach is the restoration of
natural sensation and movement viaadirectinterface with the nervous
system. This shift from mechanical to neural prosthesis represents a
transformative step in the design and functionality of bio-interactive
prosthesis technologies. Solving the existing challenges will enable
the development of prosthetic devices that offer natural, intuitive and
responsive control as well as novel methods of communication with
biological systems. This vision holds great promise forimproving both
the user experience and quality of life for individuals with neurological
impairments including limb loss, spinal cord injury and paralysis.
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