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Abstract

Artificial nerves aim to replicate the functioning of the biological 
nervous system and are expected to lead to important advances in 
bio-interactive prosthetics. Population ageing is expected to increase 
the number of patients with neurological deficits or disorders worldwide 
and to drive increasing global demand for effective prosthetic solutions. 
Most current bio-interactive prostheses use traditional complementary 
metal–oxide–semiconductor digital computing and are primarily 
focused on the restoration or rehabilitation of physiological functions 
from an electronics perspective. These devices often place little 
emphasis on neurological compatibility. By contrast, artificial nerve 
systems consisting of neuromorphic devices offer a promising and 
neurologically compatible method to either bypass damaged biological 
nerves or act as an interface between biological nerves and a prosthesis. 
Artificial nerves are designed to restore lost sensory and motor 
functions in a similar way to biological nerves by providing biologically 
plausible and simplified signal processing. Moreover, artificial 
nerves provide power-efficient control of prostheses and improve 
users’ interactions with their environment. This Review explores 
the achievements and limitations of conventional bio-interactive 
prostheses and describes advances in artificial nerve systems that 
aim to increase functionality through the seamless integration and 
neuromorphic processing of biological signals.

Sections

Introduction

Conventional bio-interactive 
prostheses

Artificial nerve systems

Future technological goals

Outlook

1Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea. 
2Department of Brain and Cognitive Sciences, Korea Advanced Institute of Science and Technology (KAIST), 
Daejeon, Republic of Korea. 3Interdisciplinary Program in Bioengineering, Institute of Engineering Research, 
Research Institute of Advanced Materials, Soft Foundry, Seoul National University, Seoul, Republic of Korea. 
4These authors contributed equally: Chunghee Kim, Dae-Gyo Seo, Yeongjun Lee.  e-mail: twlees@snu.ac.kr

http://www.nature.com/natrevelectreng
https://doi.org/10.1038/s44287-025-00197-z
http://crossmark.crossref.org/dialog/?doi=10.1038/s44287-025-00197-z&domain=pdf
http://orcid.org/0000-0002-6449-6725
mailto:twlees@snu.ac.kr


Nature Reviews Electrical Engineering

Review article

are designed to interact dynamically with the user’s nervous system, 
unlike passive prostheses, which offer strictly limited functional-
ity and lack sensory feedback7,8. Furthermore, the capabilities of 
bio-interactive prostheses go beyond simple movement; these devices 
are designed to provide simultaneous control of multiple degrees of 
freedom in real time and thereby to closely mimic the natural behav-
iour of the human body9–12. The goals of developing these devices are 
to establish bidirectional communication between the biological cen-
tral nervous system (CNS) and peripheral nervous system (PNS) and 
to provide sensory feedback that strengthens the user’s interaction 
with the environment.

Current prosthetic technologies can be categorized as having 
non-biomimetic, biomimetic or neuromorphic approaches to sig-
nal processing (Fig. 1a). Non-biomimetic signal processing usually 
relies on heuristic rule-based operations and does not consider 
biological neurophysiology. Movement responses to input signals 
are generated by following predefined rules, which limit the degrees 
of freedom available for prosthetic operation. By contrast, biomi-
metic signal processing attempts to replicate at least some of the 
anatomical and physiological principles of biological systems. Such 
devices leverage biological models to process sensory inputs and 
generate movement patterns that closely resemble natural neural 
responses. Finally, neuromorphic signal processing focuses on rep-
licating neuronal and synaptic principles using event-driven spiking 
neural networks (SNNs). The results closely mimic real neural activity 
and enable efficient, low-power, real-time adaptation to biological 
signals.

Bio-interactive prosthetic devices researched so far typically 
require substantial user training over extended periods of time10,13–15. 
Moreover, many such devices have not yet exploited the full potential 
of synaptic functions. For example, most clinical trials have studied 
functional electrical stimulation (FES) devices, which merely gener-
ate a pulse signal regardless of how the prosthesis communicates 
with the biological system16,17. These systems mainly use conventional 
complementary metal–oxide–semiconductor digital computing for 
both neural signal processing and electrical stimulation. This process 
requires bulky external computing units and processors for signal 
filtering, modulation and regression or classification that consume a 
large amount of energy18–21.

To overcome these demerits, the field of bio-interactive prosthetic 
technology is moving towards the use of neuromorphic hardware that 
emulates or replaces the function of impaired nerves and enables the 
sophisticated and naturalistic movement of paralysed limbs while mini-
mizing the use of external high-power computing devices. Artificial 
nerves could simplify the signal processing pipeline in bio-interactive 
prostheses by permitting direct communication between the user and 
the prosthesis, and could reduce energy consumption by mimicking 
event-driven signal processing without relying on external comple-
mentary metal–oxide–semiconductor computing. Artificial nerves 
also aim to seamlessly integrate with the user’s nervous system via 
control and feedback mechanisms that exploit the inherent adaptive 
and learning capabilities of neuromorphic devices (Fig. 1b). Thus, the 
use of neuromorphic engineering can not only overcome the limita-
tions of conventional bio-interactive prostheses but also enable the 
development of advanced devices with improved functionality and 
an intuitive user interface. Ultimately, artificial nerves are expected 
to provide a key component of this technology, which might offer a 
future in which prosthetic devices feel and function similar to natural 
extensions of their users’ bodies.

Key points

	• Conventional bio-interactive prostheses that rely on bulky external 
computing architectures and complex algorithms have high power 
use and operational latency; their low biological plausibility mandates 
extensive user training.

	• Artificial nerve systems based on neuromorphic hardware and 
principles of synaptic plasticity replace conventional computing with 
event-driven signal processing and analogue memory properties that 
reduce both complexity and power consumption.

	• Artificial nerves convert stimuli into neural spikes and mimic afferent 
and/or efferent pathways to provide natural sensory feedback and 
smooth muscle control without extensive digital processing.

	• Near-sensor and in-sensor neuromorphic processing are essential to 
reduce the data transfer load and enable real-time filtering and feature 
extraction for accurate decoding of motor intent and sensory pattern 
recognition.

	• Artificial nerves that use closed-loop feedback and biocompatible 
signalling enable naturalistic bidirectional communication by 
dynamically adjusting motor outputs based on multimodal sensory 
inputs and the user’s real-time physiological state.

	• Flexible, stretchable materials and biocompatible encapsulants 
ensure long-term stable performance and allow on-skin or implantable 
artificial nerves to integrate seamlessly, reduce mechanical strain and 
enhance user comfort in daily life.

Introduction
Nerves are easily damaged, including by physical injury, genetic fac-
tors, secondary complications and ageing. Nerve damage impedes sig-
nal transmission and can lead to permanent loss of function1–3. Various 
attempts have been made to repair damaged nerves via microsurgery 
and medication but full recovery of damaged or degenerated nerve 
function remains almost impossible. Moreover, despite considera-
ble advances in medicine and biology, no major breakthroughs in these 
approaches are on the horizon. The development of bio-interactive 
prostheses that can restore these lost functions provides an alternative 
method to rehabilitate patients with neurological damage4–6. Accord-
ingly, artificial implementations of the key features of biological nerves 
(that is, artificial nerves) have gained considerable attention over the 
past 10 years. Research into artificial nerves that can imitate biologi-
cal neural events has also surged, especially those with applications 
in bio-interactive prostheses. This neuromorphic approach to the 
development of bio-interactive prostheses aims to mimic the neural 
architecture and functions of the human nervous system, such as 
real-time information processing, event-driven responses and parallel 
operation.

Bio-interactive prostheses are artificial devices that can be 
designed to interact with various biological signals, including elec-
trical signals detectable by electromyography (EMG), electroencepha-
lography (EEG) or electrocorticography and chemical signals such as 
ions, neurotransmitters and hormones. The purpose of bio-interactive 
prostheses is to restore lost functions and, accordingly, these systems 
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This Review provides a guide to the development of bio- 
interactive prosthesis operated by artificial nerves. We first explore 
the features and limitations of bio-interactive prostheses based on 

conventional signal processing architectures. We then discuss the 
contributions of artificial nerve systems to bio-interactive prostheses. 
Finally, we discuss the essential components and strategies needed to 
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Fig. 1 | Development of bio-interactive prosthesis control. a, Non-biomimetic 
prostheses rely on algorithms that do not directly mimic neural behaviour or 
consider biological properties. Biomimetic prostheses replicate biological 
signals using conventional electronics, which requires prior modelling of 
neural activity. This approach enables more-intuitive control and enhanced 
interaction with the prosthesis by incorporating biological models, such as 
body kinematics and spatio-temporal mapping of neural signals. Neuromorphic 
prostheses directly adopt the neural dynamic principles of biological nerves by 
allowing event-driven signal processing in a spiking neural network (SNN) hosted 
in external complementary metal–oxide–semiconductor computing, which 
results in more-realistic responses. b, Artificial nerves mimic the characteristics 

of biological nerves to establish a hardware-implemented neuromorphic 
bypass for neural signals without using external complementary metal–oxide–
semiconductor computing. Through neuromorphic properties that mimic 
synaptic plasticity, artificial nerves communicate with biological nerves and 
restore afferent and efferent signal pathways that facilitate sensory feedback as 
well as actuation. Spider charts display representative performance components 
(namely power efficiency, computational simplicity, naturalness, real-time 
responsiveness and adaptability) of the four bio-interactive prosthesis types. 
The farther from the chart centre, the greater the degree of each component. 
Chart colours and bar heights indicate technological readiness levels.
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create improved bio-interactive prostheses that offer high signal pro-
cessing efficacy, biocompatible signal communication and seamless 
integration with the human nervous system.

Conventional bio-interactive prostheses
Biomedical research aimed at the remediation of malfunctioning 
neural systems and injured or lost body parts has focused on restor-
ing function using drug treatments, cell therapy22,23 and genetic 
engineering24,25. In the past 50 years, electrical neuromodulation has 
considerably broadened the spectrum of strategies for restoring neu-
ral signal-transduction functions through the use of bio-interactive 
prostheses26,27 (Boxes 1 and 2). This technology has contributed to 
the rehabilitation of patients with neurological conditions such as 
paraplegia28, quadriplegia15 and limb amputations29.

Bio-interactive prostheses are engineered to bridge the gap 
between human tissue and prosthetic effector devices in an ordered 
structure that mimics that of the biological nervous system. These 
sophisticated prostheses incorporate high-level, mid-level and 
low-level controls, which are each important in ensuring efficient 
interaction between the user and the prosthesis30. The overall sig-
nal communication loop is realized through a hierarchical control 
scheme that reflects the way in which biological nervous systems 
process signals and enables rapid responses to environmental 
changes while preserving device stability and functionality. An 
overview of these control strategies is provided below, along with 

brief details of the signal conditioning or modulation used in each  
approach.

High-level controls
High-level controls detect the user’s electrophysiological signals via 
methods such as EMG, EEG or electroneurography and translate them 
into commands sent to the prosthesis. This level of control is crucial for 
both capturing and interpreting the user’s intentions. High-level con-
trols also encode externally sensed stimuli into electrical signals, which 
enable the user to perceive these stimuli as natural sensory feedback 
through their neural pathways.

Thus, the essential function of high-level controls in a conventional 
prosthetic operating system is interaction with the user. This function is 
mediated by translation of the complex natural signals passed between 
the user and prosthesis into a format that can be interpreted by the 
prosthetic to enable the user’s intended operation. Computational 
methods are used, along with components such as neural electrodes, 
signal filters and signal generators, to process very large amounts 
of unstructured data and extract meaningful information into the 
biological interface.

Operation of a prosthetic device typically starts with decoding 
the user’s physiological signals. EMG signals31,32 originate from the 
electrical activity of muscle and provide direct relationships with 
motor intentions, whereas brain signals (detected by EEG33–35 or 
electrocorticography36,37) and peripheral nerve signals (detected by 

Box 1 | Unidirectional bio-interactive prosthetics
 

Bio-interactive prosthetics interface with the nervous system 
to restore lost sensory and motor functions. These advanced 
prosthetics work by decoding neural signals to control prosthetic 
limbs, or by encoding sensory information to send to the brain. 
The best-known prosthetic devices that interact with our nervous 
system are the artificial cochlea and the artificial retina. The artificial 
cochlea restores hearing in individuals with hearing impairments by 
transforming sound waves into electrical impulses that stimulate the 
auditory nerve208–211. The artificial retina restores sight in individuals 
with vision impairments by converting light into electrical signals 
to stimulate the retina212–214, optic nerve215,216 or visual cortex217. 
Additionally, thermal sensation on amputees’ phantom hands can be 
provided by a non-invasive device worn at the amputation plane218. 
The sensory signals generated by these bio-interactive prosthetics 
facilitate the interaction of these individuals with their environment.

When nerve pathways are damaged, they cannot conduct 
generated biological signals, the consequences of which can be 
severe219. For example, spinal cord injuries disrupt sensory and motor 
communication and can cause permanent paralysis. However, this 
issue can be addressed by providing detours around damaged 
nerves. Decoding of electrophysiological signals from muscles 
(detected by electromyography (EMG)) or from the motor cortex 
in the brain (detected by intracortical or epicortical electrodes) 
enables the intention of movement to be transmitted to prosthetic, 
bionic or paralysed limbs. For example, the formation of new 
cortical connections in the primary motor cortex (M1) can bypass 
damaged areas220. Recordings from brain-implanted microelectrodes 
can predict motion intention221 and thereby instruct an electrical 
stimulator to activate muscles in paralysed limbs, bypassing the 

spinal cord. By using machine learning to analyse kinematic and 
EMG data, continuous locomotion can be predicted and appropriate 
signals can be conveyed to the spinal cord to form a closed-loop 
system (see the figure). This approach, which includes brain-signal 
recording and epidural electrical stimulation, has shown promise 
in restoring movement after spinal cord injury in rodents33 and 
non-human primate models199. Voluntary locomotion was restored in 
animals by using a closed-loop system with epidural stimulation and 
drug intervention199,222. In people with spinal cord injuries, continuous 
decoding of EMG and brain signals, correlated with three-dimensional 
body kinematics, aids in restoring voluntary walking10,15.
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electroneurography38–41) provide motor-related neural signals that 
are associated with movement planning and execution. High-level pro-
cessing of these electrophysiological signals is typically mediated by 
either direct control or pattern recognition-based control. In the direct 
control approach, motor signals are mapped directly to prosthetic 
control signals on the basis of measurable features (in, for example, 
EMG traces). Parameters such as impedance or torque that produce 
either binary (on or off) outputs or proportionally modulated outputs 
can be determined with a direct control approach42,43. This approach 
is computationally efficient and provides rapid responses to a user’s 
volitional motor commands. Nonetheless, reliance on simple signal 
metrics or amplitudes might not effectively capture the non-linear fea-
tures of neuromuscular systems. To address this limitation, researchers 
use biomimetic signal processing to extract additional features. For 
example, machine learning can be used to derive biomimetic models 
that approximate a realistic physiological state44,45 and enable pros-
thetic control signals to be more accurately mapped than is possible 
using electrophysiological signals alone. Even with this capacity, direct 
control cannot reflect variations in user intent and is sensitive to noise, 
one consequence of which is the need for frequent recalibration.

The pattern recognition-based control approach extracts a range 
of representative features (such as event timing or frequency) from 
multichannel electrophysiological recordings. Extracted features 
are analysed using classifiers that infer the user’s motor intentions. 
The pattern recognition control approach is more commonly applied 
to EEG and electroneurography signals (which are not always tightly 
linked to muscle activity) than to EMG signals. Early pattern recog-
nition control systems used heuristic rule-based classifiers such as 
finite state machines46,47 and decision trees48,49. These methods rely 

on predefined rules to categorize electrophysiological signals and 
translate them into corresponding prosthetic movements. Although 
these methods are effective for identifying fixed sets of patterns, they 
generate inflexible classification models and therefore have limited 
ability to capture the full range of user intentions. To overcome these 
limitations, machine learning classifiers have been developed that 
can recognize complex patterns in electrophysiological signals after 
training on extensive datasets. Supervised training classifiers such as 
support vector machines50,51, linear discriminant analysis52,53 and other 
mechanisms54,55 can classify new signals by comparing their features 
with those of representative datasets. These machine learning classi-
fiers have shown promise for increasing the accuracy and adaptability 
of signal interpretation. However, pattern recognition systems typi-
cally require extensive training and remain sensitive to inter-session 
variability and environmental disturbances56.

High-level control systems can also process sensory feedback  
in the afferent pathway. High-level sensory signal processing begins 
with the collection of external stimuli from multiple sensors embedded 
in the prosthesis, followed by the extraction of spatio-temporal ana-
logue signals and their encoding as electrical signals. High-level control 
uses patterned electrical pulses to map the resulting encoded sensory 
data onto the neural interface with the user. This process depends on 
the part of the body and the type(s) of sensory input, and provides 
the user with detailed and accurate feedback14,57–59. These signals are 
designed to stimulate the user’s sensory nerves in a way that provides 
biomimicry when perceiving stimuli and generating a neural response.

Unlike motor signals, which are mainly under the user’s conscious 
control, sensory information remains largely unprocessed and in the 
form of continuous analogue signals. As a result, complex pattern 

Box 2 | Bidirectional bio-interactive prosthetics
 

Even for a bio-interactive prosthetic that is capable of precise motor 
control, precise movement cannot be achieved without sensory 
feedback. Electrophysiological signals drive the movement of the 
prosthesis, but sensory signals are important to enable the user 
to determine the consequences of this movement223,224. Sensory 
feedback in biological limbs conveys information not only from 
outside the body (about interactions with objects, such as pressure 
and texture) but also from within the body (such as movement and 
position). Thus, combinations of motor signals and somato-sensory 
signals provide the information that is essential for precise control. 
When prostheses do not provide such information, the user 
must rely on visual feedback to control them. For this reason, a 
prosthesis system that is designed to restore locomotion and enable 
manipulation of objects requires bidirectional communication of 
sensorimotor information to coordinate actions effectively.

Bidirectionally interactive prostheses not only decode the 
user’s intentions with regard to movement but also deliver sensory 
feedback. For example, one type of upper-limb prosthesis is 
controlled by surface electromyography (EMG) signals, whereas 
sensory information is sent to the median and ulnar nerves. This 
sensory feedback is delivered by intraneural stimulation, in which 
the user must learn to interpret stimulation properties such as 
amplitude, pulse width and frequency. Several training sessions 
might be required to accustom the user to these feedback signals13. 
This arrangement enables patients to control the force applied by 

the prosthesis and to handle different types of object; object size and 
compliance are differentiated by tactile and proprioceptive feedback, 
rather than by relying on visual or acoustic feedback. Tactile feedback 
alone is insufficient for position control and proprioceptive feedback 
alone is inadequate for force control, but the combination of both 
types of feedback enables the user to precisely control the prosthesis 
and restores dextrous and agile movement. Moreover, bidirectional 
feedback helps reduce phantom limb pain (the sensation of pain in a 
missing limb) by addressing the absence of sensory feedback from 
the lost part of the limb to the brain225,226. When sensory feedback 
is provided through a bio-interactive prosthesis, patients report 
increased confidence, considerable relief from neurological pain and 
improved functional outcomes60,181,227–229.

Interest is growing in applying neuromorphic approaches 
to neural prosthetics. For example, a neuromorphic system has 
been used to connect two neuronal populations in vitro, which 
enabled bidirectional interaction through a spiking neural network 
(SNN)230. This model demonstrates the potential of all-hardware 
neuromorphic prostheses to reconnect neural networks. Additionally, 
a neuromorphic human reflex model allowed amputees to 
handle 47% of the typical neural information levels of healthy 
individuals231. Artificial synaptic devices have also achieved biological 
sensorimotor97 and proprioceptive19 feedback loops without 
extensive computation.
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recognition is not necessary and direct control is sufficient for trans-
mitting this information. Direct control signal modulation rules can 
be applied to encode sensory signals into neural signals by first simply 
defining a sensory perceptual region in the corresponding impaired 
area57,59,60. Early attempts at the restoration of sensation focused on 
adjusting the amplitude, frequency and pulse width of stimulation58,59,61. 
However, these methods sometimes led to paresthaesias due to 
the non-natural or excessive activation of nerve fibres. Therefore, 
more-advanced biomimetic simulation models have been proposed 
to emulate the spatial distribution and temporal dynamics of neural 
spikes for each type of sensory receptor. Several remarkable biomi-
metic simulation models have been developed for the palmar surface 
of the hand (TouchSim62), foot sole (FootSim63), retina (Virtual Retina64) 
and cochlear hair cell auditory-nerve fibres65. Biomimetic sensory 
restoration improves both prosthesis functionality and overall user 
experience, which can make the prosthesis feel like a natural extension 
of the user’s body. However, the signal-encoding processes required to 
provide natural sensory feedback incur a massive computational load66.

Mid-level and low-level controls
Mid-level controls are responsible for both precise signal transmis-
sion to the effector and accurate acquisition of signals that represent 
sensory information from sensors, whereas low-level controls are 
responsible for the execution of motor commands and the perception 
of external stimuli.

Mid-level and low-level controls for the processing of motor and 
sensory signals in conventional bio-interactive prostheses are vital for 
precisely and accurately executing the control commands generated by 
high-level signal processing. Motor execution steps are then planned 
according to biological kinematic models to emulate natural motor 
behaviours. In a direct control scheme, a high-level controller calcu-
lates these dynamic motor parameters and transfers this information 
to mid-level and low-level controls, which perform forward-kinematics 
calculations67. By contrast, in pattern recognition-based control 
approaches, the high-level system identifies a particular motion 
category (for example, walking, standing or sitting) and leaves the 
mid-level and low-level controllers to execute the structured actions 
and steps required to generate this motion68. For instance, in lower-limb 
prostheses, pattern recognition-based control recognizes cyclic gait 
patterns, whereas mid-level and low-level controls generate com-
mands for continuous movement. These commands typically require 
real-time feedback about the internal state of the prosthesis to verify 
that the actual motion matches the user’s intended trajectory. As an 
example, echo control exploits the phase-delayed mirror symmetry 
of leg movement during walking. This system records the position 
and trajectories of the intact limb, and then applies a phase delay and 
scaling before replaying them on the assisted limb69,70. However, given 
that the prosthesis simply repeats the contralateral limb’s motion auto-
matically with a time delay, this method might not fully represent the 
user’s intention. Therefore, complementary limb motion estimation 
has been adopted to restore natural limb motion. This method analyses 
the motion of the non-assisted limb to infer the intended motion of 
the contralateral assisted limb, and then maps this information onto 
a reference trajectory for the prosthesis71.

Additionally, in upper-limb prostheses, mid-level and low-level 
controls adjust motor commands in real time based on sensory 
feedback and motion planning algorithms that use Kalman filters or 
machine learning algorithms to estimate system states72,73. These com-
mands can preform a prosthetic hand to grasp an object and maintain a 

stable grip without slipping74. Also, sharing motor operating informa-
tion with a sensor can enable the design of commands that extend the 
arm to an object, release an object and pause for appropriate intervals75. 
These controls perform real-time monitoring and adjustment of the 
operation status of the prosthesis. Sensors embedded in the pros-
thesis continuously provide feedback on various parameters such 
as joint angles, velocity and force. However, the raw somato-sensory 
signals from these sensors are often noisy and require substantial 
preprocessing to render them usable. Signal processing techniques 
such as fast Fourier transform and wavelet transform are used to 
extract either time-domain or frequency-domain features from these 
signals76–78. The status of the prosthesis can then be defined using 
proportional–integral–derivative control, which is widely used to 
ensure smooth and accurate movements of the prosthesis79,80.

In sensory bio-interactive prostheses, mid-level and low-level 
controllers can preprocess external stimuli to reduce the computa-
tional burden on the high-level controller. The raw signals produced by 
external stimuli are encoded by applying filters, adjustments or other 
processing steps depending on the sensor’s modality and performance 
parameters (such as resolution and sensitivity). However, biomimetic 
methods that fully replicate neural activity based on traditional von 
Neumann computing architectures require heavy computation to 
encode raw signals81,82. Moreover, although conventional signal pro-
cessing in prosthetic control systems is effective in bridging the gap 
between the user’s intention and executed action, this approach often 
results in feedback that is delayed and less accurate than that provided 
by a biological nervous system83,84. Thus, the control methods used in 
conventional bio-interactive prostheses can be regarded as rigid inter-
preters of biological signals. They are not capable of connecting the 
user and prosthesis in an embodied manner by enabling bidirectional 
communication based on wholly biocompatible signal processing 
methods.

Neuromorphic signal processing
The neuromorphic approach has been adopted in bio-interactive pros-
thetic control systems to both reduce power consumption and replicate 
biological neural activity in an intact yet computationally simplified 
manner that overcomes the drawbacks of conventional prosthetic 
control architectures.

In direct control systems, neuromorphic models often rely on 
equations that reflect biological neuron dynamics85–87 to convert 
the analogue sensor outputs into spiking neural signals that enable 
event-driven, asynchronous and parallel signal processing. Typically, 
embedded software calculates time-dependent changes in a simulated 
membrane potential and triggers spikes when a threshold is reached. 
In pattern recognition-based control systems, SNNs and spiking 
signal conversion circuits88,89 are used to mimic hierarchical neural 
connections90,91. The SNN computing parameters require exposure to 
large training datasets to enable them to correlate sample input signals 
with accurate prosthetic command patterns. Therefore, SNNs not 
only improve the accuracy of pattern recognition but also adapt to an 
individual user’s neural spiking patterns92,93 and time-varying biological 
activities based on adaptive learning94. Furthermore, development of 
SNN hardware techniques into neuromorphic prostheses in industrial 
and academic research settings could further improve the efficiency 
of signal processing and decrease power consumption95,96. In a similar 
vein, another strategy focuses on using artificial nerve systems that 
mimic the functional characteristics of biological synapses. These 
systems are expected to simplify signal processing compared with 
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conventional approaches that rely on externally modelled neuromor-
phic software. Building on this approach, artificial nerve systems that 
are capable of mimicking and seamlessly interfacing with the biologi-
cal nervous system are anticipated to replace conventional prosthetic 
operating systems.

Whereas conventional bio-interactive prostheses have already 
reached technological readiness levels of 6–9, neuromorphic prosthe-
ses (especially those using artificial nerve systems) remain at an early 
stage of development (technological readiness levels 2–4). Artificial 
nerve systems, in particular, are still primarily at the concept valida-
tion and fundamental experimental stages. Although artificial nerve 
systems operate similarly to direct control-based methods, which 
likewise bypass neural signals and have a minimal computational load, 
the goal of artificial nerve systems is to provide a fully hardware-based 
neuromorphic signal processing bypass that connects the user directly 
with the bio-interactive prosthesis and mimics the principles and 
functions of biological nerve systems.

Artificial nerve systems
The advent of artificial nerve systems composed of artificial neurons 
and artificial synapses that enable efficient data processing using 
simple biomimetic device functions and circuit configurations has 
introduced a new paradigm in prosthetic technologies18,19. Artificial 
nerve systems use SNNs and other hardware to drive biological activity 
by emulating the spike signal-transduction and signal-transmission 
behaviours of biological nerves as well as the plasticity of biological 
synapses. These devices aim to provide seamless integration with the 
human nervous system owing to the similarity of their signals to those 
of biological systems. Artificial nerve systems that are intended to 
interface directly with biological nerves also eliminate the need for 
additional signal processing (as is required in conventional prosthetic 
control systems).

The close connectivity of artificial nerves results in more-natural 
motion control and more-accurate sensory feedback than is possible 
with conventional signal processing. For this reason, artificial nerves 
are suitable for bio-interactive prostheses that require high energy 
efficiency, closed-loop operation, portability and stability. These char-
acteristics enable their daily use in the form of on-skin or implantable 
electronics without the need for bulky external power sources.

Artificial synapses
Artificial nerves are connected to each other and to biological tissue 
by artificial synapses that emulate the functions and responses of 
biological synapses10,18,97,98. These artificial synapses are designed to 
replicate the plasticity of biological synapses, which refers to the capac-
ity to modulate signal-transmission efficacy (also known as synaptic 
weight) in response to experience. Synaptic plasticity is essential for 
the accumulation of memory and learning in biological systems and is 
characterized by both the potentiation (strengthening) and depression 
(weakening) of trans-synaptic signal-transmission efficacy in response 
to neural activity patterns99–101.

Synaptic plasticity has been successfully emulated by devices 
with two-terminal and three-terminal structures that use various 
working mechanisms, including charge-trapping102–104, formation 
of conductive bridges105,106 or ferroelectric tunnel junctions107–109, 
ion migration110–112 and electrochemical reactions18,19,98–101,113–116. Ion 
gel-gated organic synaptic transistors (IGOSTs) are an especially 
promising technology. When subjected to an electrical field, ions 
in a gel can migrate and form electric double layers on the polymer 

channel surfaces or can even permeate and dope the channel. IGOSTs 
have demonstrated various kinds of synaptic responses, including 
long-term plasticity (LTP), short-term plasticity (STP) and the linear or 
symmetrical modulation of synaptic weights100,101,113. LTP is exploited 
to achieve learning and memory, whereas STP is exploited for imme-
diate responses and is considered a crucial feature of bio-interactive 
sensory and motor prostheses18,19,97,98. Electric double layers are mostly 
exploited for STP-dominant operations, whereas electrochemical 
doping endowed by high volumetric channel capacitance is mainly 
exploited for LTP-dominant operations and enables both low-voltage 
operation and mimicry of biological synaptic mechanisms117. IGOSTs 
can exhibit STP and LTP simultaneously, depending on ion movement 
and electrochemical doping parameters. The operational reliability 
and functional versatility of IGOSTs render them particularly suitable 
for use in artificial nerves.

In artificial synapses, potentiation and depression are typically 
induced by applying voltage spikes that emulate presynaptic action 
potentials. The number and frequency of input spikes can alter the plas-
ticity of the output signal of artificial synaptic devices. When a voltage 
spike is applied to the gate electrode of a synaptic transistor such as an 
IGOST, ions that have the same charge as the spike will move towards 
the channel wall and form an electric double layer. This process induces 
charge carriers in the transistor channel and thereby maintains its con-
ductance during the period of electric double-layer formation, which 
yields STP118,119. Under specific input conditions, ions can penetrate the 
active layer and induce additional charge carriers; the trapping of these 
ions in the active layer establishes LTP, which is maintained until the 
ions are de-trapped, even after the cessation of stimulating spikes99,117. 
LTP characteristics can be exploited to achieve both localized memory 
and processing in memory, which together enable the preprocessing 
of signals used in bio-interactive prosthesis and cannot be achieved 
with STP alone. The synaptic plasticity responses of IGOSTs can be 
precisely regulated to implement diverse functions. For instance, the 
STP property is required to obtain immediate response to sensors 
and biological signals, whereas the LTP property is required for signal 
manipulation based on localized memory and subsequent processing. 
Several methods have been used to modulate the properties of artificial 
synaptic devices, including modifying the semiconducting material to 
meet the desired dynamic conductance range120,121 and controlling the 
microstructure of the semiconducting channel layer to modulate the 
duration over which conductance is retained100,101,113.

Artificial neurons
Artificial neurons are the electrical component of an artificial nerve. 
The artificial neuron generates spike signals in response to integrated 
spatio-temporal inputs derived from sensory receptors or other neu-
rons and then transmits this signal through artificial synapses between 
neural networks. This biomimetic approach enables artificial neurons 
to effectively replace damaged nerves and thus to provide the core 
element of next-generation bio-interactive prostheses.

The generation of spike signals in artificial neurons closely mim-
ics the consecutive spiking behaviour of neural signals in the spiking 
frequency range of biological neurons (<200 Hz)122. Several artificial 
neurons have been implemented using a ring oscillator that consists 
of multiple transistors123,124, but the use of numerous transistors and 
passive electronics yields bulky circuits that are not suitable for direct 
interfaces with biological nerves. By contrast, circuits that comprise 
components commonly used in artificial synapses (such as OECTs), 
along with capacitors and resistors can yield artificial neurons that can 
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both generate and propagate action potentials, and thereby simulate 
the electrical activity of neurons125,126. For instance, when the number of 
applied electrical impulses (the input signal) exceeds a given threshold, 
the artificial neuron generates a voltage spike that propagates along 
its axon, similar to the action potential of a biological neuron. This 
process in an artificial neuron emulates the integrate-and-fire model 
of a biological neuron127.

Artificial neurons can also operate using the threshold concept 
and the all-or-none law to determine whether an input stimulus should 
be included in signal processing. In this model, continuous stimuli 
accumulate and result in consecutive output spikes once a predeter-
mined threshold is reached, a characteristic that effectively filters out 
noise. The signals from artificial neurons are integrated with artificial 
synapses to enable the incoming information to be summed both 
temporally and spatially to form an input signal for artificial neurons. 
This integration process enables external stimuli to be effectively 
processed concurrently. As a result, the neuron responds to complex 
input patterns and adjusts its output signals according to the cumu-
lative activity of its synapses, which in turn determines whether the 
operating threshold voltage is exceeded and, therefore, whether the 
output signal is fired.

Artificial nerves
Artificial nerve systems represent a considerable advance in bio-
interactive prostheses. Compared with conventional bio-interactive 
prosthetic systems, artificial nerve systems offer efficient and adaptive 
signal processing by mimicking biological event-driven signal trans-
mission between the CNS and the PNS through both efferent (away 
from the CNS) and afferent (towards the CNS) pathways. Bidirectional 
signal processing enables neuromorphic hardware to provide both 
somato-sensory feedback and the recovery of natural motor behaviour.

Unlike traditional prostheses, which convert motor commands 
or detected sensory signals into pulsed digital information to stim-
ulate nerves, artificial nerves generate an asynchronous spiking 
signal. Whereas digitized signals follow a fixed rhythm or clock, neu-
romorphic systems generate spikes (action potentials) irregularly and 
non-periodically, similarly to biological systems. These systems fire 
spikes in response to input stimuli rather than at predetermined inter-
vals, which enables event-driven operation. Moreover, asynchronous 
spiking enables the encoding of additional information in the timing 
and pattern of spikes, which enables the integration of sensing and 
processing functionalities. In sharp contrast, conventional hierarchical 
systems require extensive software-mediated signal preprocessing and 
interpretation to provide meaningful feedback to the user76,77,79,80,128,129. 
Moreover, artificial nerves also reduce energy usage by responding 
only when an event occurs, unlike conventional systems that con-
tinuously sample and process data. Thus, neuromorphic systems offer 
considerably improved energy efficiency.

Artificial afferent nerves. In the afferent pathway, artificial nerve 
systems can both detect spatio-temporally patterned stimuli and 
implement event-driven operations. An artificial receptor such as a 
neuromorphic sensor or electronic skin (e-skin)130–141 linked to arti-
ficial neurons can convert incoming stimuli to spike signals, which 
are transmitted via artificial synapses that are adapted to recognize 
spatio-temporal patterns. These spatio-temporal patterns can easily 
be analysed to accurately recognize sensory information and provide 
meaningful feedback. Artificial nerve systems replicate biological 
afferent nerve pathways by exploiting the functional characteristics 

of artificial synapses and processing the external stimuli signals from 
artificial sensory receptors (Fig. 2a). For example, the linear modulation 
of signal frequency converts sensor data to signals that modulate neural 
activity. This process conveys information about the intensity of a sensa-
tion to the brain by varying the number or firing patterns of generated 
action potentials, in a manner that mimics biological adaptation.

The capacity to integrate tactile sensations into a bio-interactive 
prosthesis gives its users a tangible way to comprehend the world. 
Human tactile receptors include slow adaptation and fast adaptation 
types142–144. Mimicking these two different responses implements a 
human-like sensory system that can detect pain as well as objects. Such 
systems are crucial for both achieving safety in daily life and providing 
lifelike functionality. The presence of stimuli that are likely to cause 
damage, such as high temperature145,146 or local high pressure147,148, ena-
bles artificial nerves to generate a nociceptive warning. Harsh stimuli 
reach the signal threshold of the artificial nerve more quickly than 
mild stimuli, and therefore provide an early warning of potential harm. 
Additionally, the plasticity of artificial synapses enables the memoriza-
tion of tactile sensations, which enables the output signals from the 
artificial nerve to shoot up rapidly again if the same noxious stimuli 
occur during the period that the synaptic device retains its memory.

Artificial synapse plasticity also provides adaptability and facili-
tates the formation of haptic memory. Haptic memory reduces com-
putational loads by enabling the preprocessing of sensory signals 
within the trained memory. Therefore, neuromorphic prostheses can 
learn specific tactile patterns, such as English character writing149 or 
various stimuli150–152, and will respond with appropriate outputs in an 
easily recognizable form.

Other human senses can also be mimicked in artificial afferent 
nerves. Optical sensing can be achieved using an array of pixels that 
convert light stimuli to electrical signals and act as optically sensitive 
artificial nerves. Each pixel is integrated with a synaptic device153,154 
or photonic synapse155–157 that directly emulates synaptic character-
istics when stimulated by light, including by integrating temporal 
patterns of stimuli into each pixel that correspond to image-related 
information. For auditory sensing, spatio-temporal signal process-
ing and noise filtration are crucial for reliable operation in the real 
world. These processes can be effectively implemented using artificial 
synapses integrated with triboelectric nanogenerators101,158. For gus-
tatory and olfactory sensing, which both rely on chemical detection, 
artificial chemical receptors can be trained by exposure to appropriate 
reactants. The artificial nerve can then discriminate between input 
signals according to the type and concentration of chemicals pre-
sent and respond by modulating the frequency of output signals159,160. 
These sensing primitives are also important in biomolecule sensing 
by visceral artificial nerves.

Rapid reactions to harmful situations can be obtained with an 
artificial nerve system that mimics the functions of a biological reflex 
arc. Such a system can be obtained by the integration of artificial affer-
ent (sensory) nerves with an artificial efferent (motor) nerve18 that 
stimulates the biological motor nerves, thereby generating motion in 
response to external stimulation. One such artificial mechanosensory 
nerve system includes a sensor that detects applied pressure and acts 
as a mechanoreceptor. Artificial nerves convert the detected informa-
tion into spike-shaped action potentials, which are sent to a synaptic 
transistor where they are processed to generate postsynaptic output 
signals. The synaptic transistor interfaces with a biological motor 
nerve, thereby forming a hybrid reflex arc that can activate an actua-
tor, such as an isolated insect leg, in response to external pressure18. 
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By mimicking natural reflexes, this system demonstrated the first use 
of artificial afferent nerves in a neural prosthesis.

Artificial efferent nerve. Artificial nerve systems in the efferent pathway 
offer the distinct advantage of exploiting synaptic plasticity to directly 

mimic the natural motion of biological effectors (Fig. 2b). This result is 
achieved by using artificial synaptic devices that emulate the synaptic 
plasticity of the neuromuscular junction in biological motor nerve sys-
tems. Conventional FES applies discrete electrical pulses of a constant 
amplitude, which induce an abrupt and drastic muscle contraction. 
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Fig. 2 | Artificial nerve systems. a, Configuration 
of an artificial afferent nerve interfaced with a 
biological system. Artificial sensory receptors 
sense incoming stimuli as electrical signals, which 
are converted into spike form by artificial neurons 
(step 1). The artificial synapse accumulates these 
signals according to their sensory information 
(step 2). The postsynaptic signals are converted into 
action potentials and transmitted to the biological 
system (step 3). Panel a adapted with permission 
from ref. 18, AAAS. b, Configuration of an artificial 
efferent nerve interfaced with a biological system 
(a rodent leg). Physiological signals are converted 
into several consecutive presynaptic voltage spikes. 
These presynaptic potentials are modulated by 
closed-loop feedback from the effector to control 
limb motion. The artificial synapse accumulates 
these signals and exhibits potentiation and 
depression based on synaptic plasticity. The 
artificial efferent nerve transmits signals to the 
motor neuron that cause a smooth contraction in 
biological muscle.
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Difficulty in predicting the force of this muscle contraction can cause 
unpredictable twitching and cramping, which cause discomfort to the 
FES user17. By contrast, biological skeletal muscle contractions are cat-
egorized into three types: twitch, summation and tetany161. Low fre-
quencies of action potentials cause muscle twitches. As the frequency 
of action potentials increases, the induced twitches gradually undergo 

summation, which smoothly changes the muscle response to a con-
tinuous and strong contraction. A further increase in the action poten-
tial frequency induces the muscle to contract with its maximum force  
(a tetanic contraction), which can take some time to relax after the 
stimulation is withdrawn162. Therefore, FES signals require additional 
processing to gradually ramp the voltage during both the onset and 
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deactivation of stimulation. By contrast, the inherent potentiation prop-
erty of artificial nerves enables the transmission of ramping signals and 
thereby increases both natural motion and patient comfort19. The gradual 
increase in muscle force response achieved by artificial nerves also elimi-
nates the need for bulky electronic components such as function genera-
tors. A single artificial synapse enables the actuator163,164 to implement 
movements analogous to those found in biological systems98. Biomimetic 
movement control cannot be achieved easily by conventional transistors, 
which only have binary (on and off) states. However, a light-responsive 
motor system composed of a soft ionic polymer–metal composite actua-
tor that contracts artificial muscles in response to optical stimulation can 
provide a graded response without the need for additional components. 
This approach has been incorporated into an artificial nerve system 
consisting of an artificial synapse integrated with a photodetector98. This 
artificial synapse can also respond to biomolecules, such as acetylcholine, 
which induce movement of the soft actuator165.

The combined use of two or more artificial synapses can increase 
the sophistication of movement responses. For instance, parallel pro-
cessing using both STP and LTP synaptic devices led to an increase in 
the displacement of chronic actuation that simulated biological condi-
tions such as muscle growth166 and muscle memory167. Each effector was 
operated via an artificial synaptic device, which obviated the need for a 
conventional memory chip to control the whole prosthesis system. Also, 
the integration of multiple artificial synapses into a robotic hand enabled 
coordinated finger movements168. The event-driven properties of arti-
ficial nerves enable spatio-temporal signal summation, which can yield 
various motor outputs that correspond to complex stimulating patterns.

Reciprocal inhibition via integrated artificial synapses can imple-
ment lifelike motion in an actuator169. By connecting and controlling a 
soft actuator using both excitatory and inhibitory synaptic devices, the 
speed, range and direction of the actuator’s motion can be precisely regu-
lated. Implementation of these responses in conventional computing 
systems requires complex architectures or additional processing steps170. 
Therefore, the use of artificial nerves minimizes device complexity.

Artificial multi-synapse systems can also be applied to biologi-
cal muscles18,19,97. Artificial efferent nerves have been connected to 
both extensor and flexor muscles using a soft hydrogel electrode. 
Adjusting the frequency of presynaptic spikes to the artificial nerves 
enabled precise control of the muscle’s movement19. Additionally, 
control of muscle extension and flexion has been implemented using 
pre-recorded electrophysiological signals from the primary motor 
cortex (M1)19 (Fig. 2b). This system represents the first demonstration 
of synchronized movement achieved using artificial efferent nerves 
and provides a basis for the future development of bipedal walking 
locomotion controlled by artificial synapses.

Synchronized movement requires that artificial efferent nerves 
receive feedback about their response from effectors such as prosthetic 
limbs or their restored biological counterparts. For a conventional 

system, the detection of internal device status and the fine adjustment 
of its movements to compensate for errors requires complicated signal 
processing and computing of inputs from multiple sensors. However, 
for artificial nerves, sensors can be integrated into the system itself and 
can both detect stimuli and provide feedback during signal processing. 
As an example, proprioceptive feedback from mouse leg muscles con-
nected to an artificial efferent nerve can be exploited to control the sig-
nal potentiation ratio in the artificial synapse and thereby prevent the 
muscle from developing unwanted tetanic behaviour19. This feedback 
mechanism enabled the artificial nerve to modulate motor behaviour 
in paralysed mice. The mice regained not only their leg movement but 
also the ability to walk and run19 (Fig. 2b).

Future technological goals
Current research mainly focuses on artificial nerves that exploit neuro-
morphic electronics to enable them to communicate with prostheses. 
However, this concept is still in its early stages of development and 
several important challenges remain to be overcome. In particular, 
considerable research is focusing on the development of bio-interactive 
prostheses that can intuitively emulate natural biological functions.

Reduced complexity of signal processing
Increasing the precision of paralysed or artificial limb movements 
requires the development of high-resolution sensors that can detect 
high-density external stimuli and neural signal recording sensor arrays. 
These arrays must collect signals from many channels (Fig. 3a). Electro-
physiological signals are in analogue form and are difficult to interpret 
owing to their small amplitude and noise, which makes them vulner-
able to attenuation and the accumulation of additional noise (such as 
thermal noise) during signal transmission. Moreover, when signals 
collected at high sampling rates are transmitted from many channels 
to a centralized computing unit, the resulting transmission of large 
amounts of data can result in latency, insecurity and high power con-
sumption171. Additionally, processing these analogue signals using 
conventional von Neumann digital computing units involves numerous 
steps of signal conversion and transmission, which further slows the 
process and increases energy requirements.

Processing-in-memory methods, such as in-sensor processing 
and near-sensor processing, could overcome this disadvantage. These 
methods process and compress data within or close to the sensors 
before transmission172 (Fig. 3a). By reducing the noise that accumulates 
during signal transmission and transmitting preprocessed and com-
pressed data, these approaches can reduce both latency and the energy 
cost of substantial data transmission173. One intelligent sensor network 
that emulates biological sensory systems directly processes incoming 
analogue signals without first converting them to digital form174. This 
intelligent system enables neuromorphic localized signal processing, 
which reduces latency, power consumption and circuit complexity.

Fig. 3 | Artificial nerves for future bio-interactive prostheses. a, In a 
conventional sensory processing prosthetic system, sensors simply convert 
external stimuli into electric signals, which incurs a huge cost in data 
transmission. In artificial nerves, in-sensor processing architectures preprocess 
information, which reduces the cost of data transmission. b, The biocompatible 
signals generated by an artificial nerve mimic biological neural activity and 
synaptic plasticity, and are controlled by feedback loops. Modulation of neural 
activity occurs via the delivery of negative feedback to biological nerves, which 
recovers the signal loop and maintains the stable status of the body (red arrow). 

Closed-loop feedback inside the artificial nerve enables it to precisely adjust its 
operation (blue arrow). c, Artificial nerves made of stretchable semiconductors, 
conductors and dielectrics enable wearable or implantable applications owing 
to their ability to both conform to and maintain adequate adhesion to biological 
tissue. The biocompatible and stretchable encapsulant must also confer 
operational stability in the in vivo environment. EPSP, excitatory postsynaptic 
potential; I, output of intelligent sensors in in-sensor processing; R, responsivity 
of intelligent sensors; S, output of a conventional sensor array.
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Intelligent systems with intensity-dependent and time-dependent 
plasticity characteristics enable the direct preprocessing of sensory 
information at a low-level stage, unlike conventional sensors that 
merely convert the intensity of stimulation into linear electrical signals 
for subsequent processing by back-end memory and processors175. The 
front-end processing units perform preliminary low-level data pro-
cessing, including noise and artefact reduction, filtering, background 
suppression and feature enhancement. The preprocessed data are then 
transmitted to back-end signal processing units for high-level pro-
cessing, which enhances the computational efficiency of post-signal 
processing176.

Near-sensor or in-sensor signal processing implemented by neuro-
morphic processors composed of artificial synapse arrays can provide 
an interface between sensors and post-processors that enables the 
preprocessing of the sensor’s analogue signals at low power without 
complex and unnecessary signal conversion. Artificial nerves have 
demonstrated the potential for near-sensor and in-sensor process-
ing of external stimuli, which represents a foundational step in the 
development of intelligent artificial nerve systems that are capable 
of processing complex biological signals. For example, an artificial 
mechanosensory nerve array composed of pressure sensors, artificial 
neurons and artificial synapses can form receptive fields where syn-
apses integrate the signals from multiple neurons for preprocessing18. 
This near-sensor signal processing approach has shown potential for 
improving the accuracy of Braille recognition compared with systems 
that do not use artificial synapses. Another in-sensor neuromorphic 
processor that comprises vertically integrated pressure sensors and 
memristors carries out preprocessing of analogue signals from the 
pressure sensors in real time, which reduces noise in tactile patterns 
and detected edges and results in superior contrast enhancement, 
noise reduction and improved pressure pattern recognition rates177. 
Optoelectronic in-sensor processing that emulates the functions and 
hierarchical connections of photoreceptors and bipolar cells in the 
retina enables real-time primary processing of visual information that 
results in image contrast enhancement and noise reduction175,178. More-
over, multimodal sensory systems that simultaneously receive sensory 
information from various sources can exhibit improved recognition 
accuracy and reduced system complexity compared with single-sensor 
systems179 as well as an increased dimensionality of the tasks that can be 
performed130. These near-sensor and in-sensor neuromorphic sensory 
processors contribute to the development of advanced bio-interactive 
artificial nerve prostheses by providing both increased signal process-
ing efficiency and improved perception accuracy in relation to sensory 
information18,149.

Even in devices that use in-sensor and near-sensor signal pre-
processing using intelligent multimodal sensors, the use of conven-
tional back-end processors that rely on von Neumann architectures 
for high-level tasks can still hinder further improvements in processing 
efficiency. The use of neuromorphic devices to perform both low-level 
and high-level signal processing can considerably simplify circuit 
design and increase the device integration density. For instance, images 
can be preprocessed by front-end optoelectronic memory arrays 
that emulate the functions of the biological retina and then routed to 
back-end high-level image processors that use in-memory processing 
units, thereby increasing the speed and reducing the energy cost of 
signal processing180.

Considerable research has been conducted on near-sensor and 
in-sensor processing systems that detect external multimodal stimuli, 
but strategies to increase the efficiency of processing of complex neural 

signals remain largely unexplored. This gap must be addressed in the 
development of advanced, high-functionality, motor neural prostheses 
and bidirectional neural prostheses.

Communication with the body
Although bidirectional signal transmission has been achieved in 
bio-interactive prostheses (Box 2), participants must still undergo 
multiple learning sessions to map the artificial stimulation onto the 
sensory information from biological nerves10,13,14,181. The biological nerv-
ous system can adapt to new sensory mappings, but whether people 
with amputations or spinal cord injuries can learn (from scratch) the 
extensive and complex information required to control each degree of 
freedom of movement of a prosthesis remains untested. To solve this 
problem, a method should be developed to enable communication 
between the body and the prosthesis without the need for additional 
signal-transducing devices or circuits. This advanced capability would 
open possibilities for future improvements by integrating increasingly 
natural and increasingly intuitive control mechanisms. In such systems, 
feedback loops enable precise control of the prosthesis by continuously 
sensing and responding to the status of both the prosthesis and the 
user’s body, to ensure accurate and responsive movements.

Biologically compatible signal transmission. Mimicking of biological 
signal transmission is essential to ensure the seamless integration of a 
prosthesis with the nervous system (Fig. 3b). This approach results in 
intuitive and efficient communication that increases the functionality 
and usability of bio-interactive prostheses. Researchers have demon-
strated that memristors can exhibit most of the known dynamics of 
biological neural systems182. Specifically, 23 types of biological neural 
behaviour have been experimentally demonstrated182.

To synchronize the active signal with biological cells, three- 
terminal artificial synapses have been created that connect previously 
uncoupled neurons by mimicking biological synaptic plasticity183. 
Activity-dependent coupling eliminates the need for complex circuitry 
at the user–prosthesis interface. Moreover, artificial synapses can both 
modulate spiking probability and delay spike generation, capabilities 
that closely resemble the functions of biological synapses and therefore 
permit the emulation of biological signal-transmission processes. Such 
artificial synapses also eliminate the need for the bulky hardware and 
complex processing used in conventional approaches78, and thereby 
facilitate the development of advanced bio-interactive prostheses. 
Artificial components that are intended to operate in biologically rel-
evant environments and maintain physical, functional and temporal 
proximity with biological components must also interact in real time 
with biological parts. For example, connectivity with biological cells 
could be facilitated by the capacity to directly detect neurotransmit-
ters such as dopamine, which would enable the immediate detection 
of biological neural signals126,184,185.

In one proposed conceptual approach, features of the biological 
neural network could be ‘copied’ and ‘pasted’ onto a neuromorphic 
system to create a hybrid neural connectivity map186. The functional 
synaptic connectivity map is first extracted from a biological neural 
network recorded from a nanoelectrode array187. This map could then 
be transferred to a network of neuromorphic devices, in which each 
device stores the connection strength of a corresponding biological 
synapse. A similar idea involves recording the connectivity map gen-
erated from a nanoelectrode array and directly imprinting this map 
onto memristors, thereby bypassing the extraction process. Although 
this concept has not yet been realized, its groundbreaking aim is to 
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construct an electronic brain via the direct engineering of neural con-
nectivity. The structures of such electronic brains could replicate the 
functional complexity of neurons by implementing characteristics of 
biological neurons, including ion-channel activity, routing and delay. 
This approach could eventually generate neuromorphic systems that 
function in the same way as biological neurons and are, therefore, 
highly suitable for communicating biological signals.

The development of artificial nerves that mimic the characteristics 
of biological neurons has already achieved a more-natural signal trans-
mission than traditional methods such as FES. By seamlessly coupling 
disconnected nervous systems and mimicking the characteristics of 
biological neurons, artificial nerves offer a promising avenue for the 
development of next-generation bio-interactive prostheses.

Feedback loop communication. The incorporation of internal sensing 
of the prosthesis status provides a feedback mechanism that enables 
the prosthesis to adjust and adapt in real time, which results in smooth 
and continuous movements that closely mimic natural motion patterns 
(Fig. 3b). A prosthesis that can constantly monitor its own status could 
also detect and respond to changes or abnormalities.

Artificial nerves have also been evaluated for control of the body’s 
homeostatic functions. In one study, artificial nerves that detected 
glucose and insulin levels could regulate a negative feedback loop 
necessary for maintaining homeostasis188. This advanced capability 
enables the continuous monitoring and adjustment of physiological 
parameters to ensure that the body remains in a balanced state. Other 
negative feedback mechanisms, such as thermoregulation and blood 
pressure regulation, could be fulfilled by a body cooperating with an 
artificial nerve.

Proprioception is essential for motor activities such as standing 
and walking. Without proprioceptive feedback, locomotion dete-
riorates, muscles can be damaged and interactions between prosthe-
sis users and their environment are suboptimal. Furthermore, a lack 
of appropriate proprioceptive response results in clumsy physical 
activity189. An artificial proprioceptor has been designed to detect 
leg movements and prevent the over-extension of leg muscles under 
the control of an artificial nerve19. This artificial proprioceptor, in 
conjunction with an artificial synapse, forms a sophisticated feedback 
loop that mimics the natural sensory feedback mechanisms found in 
biological systems. This system increases the precision and adaptivity 
of responses to changes in muscle movement and contraction force, 
which helps prevent muscle damage and substantially improves the 
user’s ability to perform complex motor tasks such as walking, run-
ning and kicking a ball19. The continuous feedback and adjustment 
enabled by this technology could markedly increase the intuitiveness 
and naturalness of movement, as well as improving interaction with 
the environment.

Importantly, artificial nerves trigger action potentials that travel 
simultaneously in both distal and proximal directions17,190. Therefore, 
generated proprioceptive feedback and motor neuron activity can 
potentially cause signal interference that results in the loss of robust 
control. To avoid the cancelling out of proprioceptive feedback owing 
to signal overlap, the external electrical signal used to generate neuron 
activity can be spatio-temporally controlled191, for example by deliver-
ing a signal that has a sufficiently low amplitude and sufficiently high 
frequency to secure excitatory postsynaptic potential. Another pos-
sible approach involves the regeneration of cancelled proprioceptive 
feedback simultaneously upon providing motor signals. Finally, the 
action potential signals emitted by artificial nerves must not disturb 

any biologically generated signals. The generation of biologically 
compatible feedback signals remains an ongoing challenge in artificial 
nerve research.

Seamless integration and biocompatibility
Artificial nerves that implement near-sensor and in-sensor processing 
must be positioned as close as possible to the signal source to reduce 
data transmission distances, minimize noise and efficiently process 
sensory and motor neural signals. As the signal source is on or inside 
deformable body tissues, these devices must be both flexible and 
stretchable to seamlessly integrate with the body (both externally 
and internally) and to minimize signal artefacts and noise caused by the 
host’s activities. Additionally, to ensure stable long-term operation in 
both external and internal environments, these devices must be made 
of biocompatible materials (Fig. 3c).

Body parts that are critical for movement and sensory detec-
tion, such as the hands and knees, have high degrees of freedom and 
undergo considerable stress. Therefore, highly effective and intuitively 
functioning bio-interactive prostheses must be composed of highly 
reliable materials that can operate stably under these challenging 
conditions. Many studies have focused on neuromorphic devices that 
combine flexible sensors and memory arrays192, but few have described 
neuromorphic devices that operate stably under strains exceeding 
5% (for reference, depending on its location on the body, the skin can 
experience strain of up to 40%193). Research on sensory synapses for 
low-level processing, excluding those that sense strain, is still insuffi-
cient. Specifically, research on stretchable memory arrays for high-level 
processing is rare, possibly because memory arrays that are highly 
tolerant to strain are challenging to create given that the weights stored 
in the memory arrays have a critical effect on computation. Methods of 
increasing strain tolerance include the deposition of one-dimensional 
semiconductor and electrode materials in serpentine shapes19,98 and 
the use of compensation circuits194. However, these approaches might 
limit miniaturization and increase the complexity of neuromorphic 
systems. An alternative idea is to use inherently stretchable polymers 
and nanomaterials97,195. Polymer blends composed of semiconducting 
conjugated polymers and polymers with a low Young’s modulus have 
been used as active materials to create stretchable synaptic transistors. 
A one-dimensional single nanowire or nanofibril network embedded 
in an elastomer matrix demonstrated reliable characteristics under 
mechanical strains of up to 100%19,97,98,196. Additionally, a conjugated 
polymer with a moderately flexible polythiophene backbone did 
not develop cracks even under 100% strain, so a device that uses this 
material could operate stably under such conditions197.

e-skin devices offer advanced characteristics and functionalities 
that traditional complementary metal–oxide–semiconductor-based 
electronic devices cannot provide198. Therefore, e-skin is suitable for 
applications in the biomedicine, wearable robotics, healthcare, aug-
mented reality and virtual reality fields. Nevertheless, improvements 
are still needed in e-skin electrical properties and long-term stability at 
the material level, memory retention at the device level, and integration 
density and processing technology at the system level.

Outlook
The development of artificial nerves presents considerable advan-
tages for the field of bio-interactive prostheses. By mimicking the 
behaviour of biological nerves, artificial nerves enable more-direct 
and more-intuitive operation of prosthetic devices than is possible 
using conventional methods. The use of artificial nerves increases the 
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accuracy of signal processing, minimizes power consumption and ena-
bles coherent communication. Traditional prostheses often struggle 
to provide effective signal matching between biological nerves and the 
prosthetic device, primarily because of the inherent complexity of bio-
logical signals and their noisy nature191. This mismatch complicates the 
decoding and interpretation of biological signals and causes difficulty 
in achieving precise prosthesis control and adaptive responses11,12,199.

Artificial nerves reduce the complexity of the processes of decod-
ing and interpreting biological signals. This simplification can lead to 
an increase in the accuracy and reliability of communication between 
the prosthesis and the user’s nervous system. By emulating the func-
tions of biological systems, artificial nerves increase biocompatibility 
and reduce both errors and power consumption18,19. Near-sensor and 
in-sensor processing can also clean up noisy signals and increase the 
reliability of signal transmission to the prosthetic device, thereby 
increasing the accuracy and responsivity of control. Artificial nerves 
that are designed to be biocompatible and flexible can integrate seam-
lessly with the body’s tissues and withstand the mechanical stresses of 
movement. Moreover, artificial nerves that communicate with biologi-
cal nerves through modalities other than electrical signals could greatly 
increase the versatility and effectiveness of artificial nerve systems. For 
instance, artificial nerves that detect and interact with biomolecules 
such as neurotransmitters, antigens and nucleic acids could facilitate 
communication with their biological counterparts200. These expanded 
abilities could include reading signals electrochemically201–203 using 
piezoelectric methods204,205 or applying other techniques to detect 
biomolecules200.

Preliminary results have demonstrated the feasibility of 
using artificial nerves for direct communication with biological 
systems18,19,97. This approach could overcome the limitations of cur-
rent bio-interactive prostheses by providing a naturalistic interface that 
adapts and responds to the user’s needs in real time. The use of flexible, 
biocompatible materials further ensures that these devices can oper-
ate stably under the mechanical stresses of daily use. In particular, the 
artificial nerve must be wearable or implantable to enable in-sensor or 
near-sensor signal processing, which greatly increases the efficiency of 
a bio-interactive prosthesis. Thus, all materials used in artificial nerves 
must be soft and stretchable. In addition, the materials must have low 
cytotoxicity and immunogenicity to avoid long-term adverse effects 
when mounted on the skin or implanted in the body206,207. Encapsula-
tion materials must also be developed that can prevent biofluids from 
degrading the performance of artificial nerves without limiting the 

mechanical stretchability of wearable and implantable devices, such as 
encapsulants based on elastomers with low water vapour transmission 
rates and low ionic conductivity.

The aim of using artificial nerves is to move away from purely 
mechanical prosthesis solutions and towards seamlessly replacing 
the functions of damaged nerves while preserving the body’s natural 
form and function. The goal of this approach is the restoration of 
natural sensation and movement via a direct interface with the nervous 
system. This shift from mechanical to neural prosthesis represents a 
transformative step in the design and functionality of bio-interactive 
prosthesis technologies. Solving the existing challenges will enable 
the development of prosthetic devices that offer natural, intuitive and 
responsive control as well as novel methods of communication with 
biological systems. This vision holds great promise for improving both 
the user experience and quality of life for individuals with neurological 
impairments including limb loss, spinal cord injury and paralysis.
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