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ABSTRACT: Perovskite colloidal nanocrystals (PeNCs) have exceptional
optoelectronic properties and phase stability, making them promising for
photovoltaic applications. However, insulating ligands on PeNC surfaces
limit the current density and reduce the power conversion efficiency (PCE)
in PeNC solar cells (SCs). This study introduces an amine-assisted ligand-
exchange (ALE) strategy using 3-phenyl-1-propylamine (3P1P) to effectively
remove long ligands from PeNC films. ALE reduced long-chain ligand
density without increasing the number of defect states and therefore reduced
the exciton-binding energy of FAPbI3 NC films. These changes facilitated
exciton dissociation and charge transport in FAPbI3 PeNC SCs. The
facilitation of exciton dissociation was due to the increased magnetic dipole
interaction between excitons after the ALE process. The use of ALE achieved
FAPbI3 PeNC SCs that had an improved short-circuit current density of 17.98 mA/cm2 and a PCE of 15.56% with improved
stability after the treatment and negligible hysteresis. This work provides new insight into engineering PeNC films.

Perovskite colloidal nanocrystals (PeNCs) have high
photoluminescence quantum yields (PLQYs),1 remark-
able defect tolerance,2 and excellent photostability,3 so

they have numerous applications, including light-emitting
diodes, color filters, and solar cells (SCs).4−9 In particular,
the PeNCs are gaining attention as promising candidates for
SCs due to their separate crystal formation process apart from
film formation processes and makes them well-suited for large-
scale photovoltaic applications.9 Additionally, the PeNCs
exhibit superior phase stability compared to polycrystalline
perovskite, attributed to the ligands surrounding the NCs,
which have the potential to address stability concerns in
polycrystalline perovskite SCs.10 Furthermore, the PeNCs
demonstrate superior photophysical properties such as slow
hot carrier cooling11 and multiple exciton generation,12 unlike
polycrystalline perovskites. These properties offer the potential
to make the PCE of solar cells surpass the Schockley−Queisser
limit.13

Long-chain alkyl (oleic acid or oleylamine) ligands are
coated onto PeNCs to stabilize them in a nonpolar solvent.
However, these ligands can interrupt the path for charge
transport and thereby limit the power conversion efficiency
(PCE) of PeNC SCs. Replacing these ligands with short ones
can overcome this limitation. Most previous studies about

ligand manipulation have focused on CsPbI3
14−22 or FA/Cs

mixed-cation PeNC SCs;23−26 few have considered FAPbI3
PeNC SCs.10,27−29 However, FAPbI3 has a narrower band gap
(∼1.48 eV) than CsPbI3 (∼1.73 eV)30 and is therefore
considered more suitable than CsPbI3 for use in SCs. The
narrow band gap increases light absorption in the perovskite
films across an extended range of wavelengths. Investigations
of polycrystalline perovskite SCs have been primarily focused
on the FAPbI3 structure.31,32 Therefore, research on FAPbI3
NC SCs should seek ways to increase their efficiency and
chemical stability.
However, ligand-exchange methods that are used for CsPbI3

NC SCs are not directly transferable to FAPbI3 NC SCs due to
the distinct properties of Cs+ and FA+ cations.24 Ligand
exchange on the surface of PeNCs entails a dynamic
equilibrium between the adsorption and desorption of ligands
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on PeNCs.33 This process is susceptible to the surface
chemistry of the PeNCs.
Specifically, van der Waals interactions or hydrogen bonds

occur between FA+ and ligands, but not between Cs+ and
ligands,34 and complicate the process of manipulating ligands
on FAPbI3 PeNCs. Hence, to increase the PCE of FAPbI3 NC
SCs, alternative processes or materials tailored to the ligand
exchange strategies must be developed.
In this work, we report an amine-assisted ligand-exchange

(ALE) method that uses 3-phenyl-1-propylamine (3P1P) to
achieve high-efficiency FAPbI3 NC SCs and demonstrate its
effectiveness in removing long-chain ligands. The reactivity of
3P1P with oleic acids is moderate, resulting in the removal of
ligands from the NC surface without compromising stability or
introducing defects. Elimination of long-chain ligands
increased the short-circuit current density (Jsc) and fill factor

(FF); these results show that the 3P1P treatment can facilitate
charge transport and extraction in FAPbI3 NC SCs.
Furthermore, investigations of the defect status in PeNC
films demonstrated that ALE did not introduce additional
defects. As a result, FAPbI3 NC SCs with a PCE of 15.56%
were obtained.
FAPbI3 PeNCs were synthesized using a hot injection

method (Figure S1a, Supporting Information) that has been
widely reported in the literature with minor modifications. A
TEM image (Figure S1b, Supporting Information) and
photoluminescence (PL)/absorbance spectrum (Figure S1c,
Supporting Information) of FAPbI3 NC solution were
obtained. The average diameter of the FAPbI3 NCs was 15.8
nm.
Ligand exchange (Figure 1a) on FAPbI3 NC SCs was

conducted by using a 3P1P solution. The solution was

Figure 1. (a) 3P1P treatment schematics, (b) cross-section SEM image and a schematic of device structure, and (c) photoluminescence of
the pristine and 3P1P-treated films.

Figure 2. (a) FT-IR, (b) NMR, and (c) transient PL spectra and (d) TPC, (e) TPV, and (f) IS spectra of the pristine and 3P1P-treated films.
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prepared by incorporating 3P1P into methyl acetate (MeOAc),
which was then used to treat the FAPbI3 NC films. A layer-by-
layer deposition technique was used, with sequential ligand-
removing steps using MeOAc containing 3P1P alternating with
pure MeOAc. The device structure schematics and cross-
sectional SEM images are provided in Figure 1b.
We first examined the general properties of the film treated

by 3P1P, including the optical properties, crystal structure, and
surface properties. The PL (Figure 1c) spectra were obtained
from pristine FAPbI3 film and FAPbI3 film treated with 3P1P.
3P1P treatment significantly increased the PL intensity but did
not affect the PL peak position of the FAPbI3 films. These
results suggest that the 3P1P treatment can decrease the trap
density on the surface of PeNCs. Furthermore, 3P1P treatment
resulted in little change in the XRD spectra; this result
indicates that this strategy would not induce degradation of the
crystal structure (Figure S2, Supporting Information).
Scanning electron microscopy (SEM) images of the films

(Figure S3, Supporting Information) demonstrated that the
3P1P treatment did not degrade the morphology of the
FAPbI3 NC film. However, atomic force microscopy (AFM)
images determined that the 3P1P treatment decreased the
surface roughness from 3.52 to 2.32 nm (Figure S4, Supporting
Information). This decrease demonstrates that replacing the
long-chain ligand with short ligands increased the packing
density of PeNC films. Furthermore, X-ray photoelectron
spectroscopy (XPS) analysis demonstrated that 3P1P treat-
ment did not induce additional defects (Figure S5, Supporting
Information).
To identify how the 3P1P treatment yields ligand exchange,

series characterizations for PeNC films were conducted. The
FT-IR spectrum changed after 3P1P treatment (Figure 2a).
3P1P treatment caused decrease in of C−Hx stretching
(2780−2960 cm−1), C�C−H stretching (3007 cm−1), and
C−H2 bending (1468 cm−1) that are associated with oleyl
groups,35 and in symmetric stretching vibrations (1405 cm−1)
and asymmetric stretching vibrations (1525 cm−1) that
correspond to COO− groups.26 These results indicate that
the 3P1P treatment induced an effective detachment of oleyl
ligands from the FAPbI3 PeNCs; this change could facilitate
charge transport.

1H NMR analysis was conducted by dispersing the PeNC
films in d-chloroform (Figure 2b). 3P1P treatment caused a
significant weakening of the signal around 5.3 ppm, which
corresponds to oleyl species.10 This change indicates that the
3P1P treatment removed long-chain ligands from the surface
of the PeNCs. Two mechanisms are proposed here to explain
the ligand-exchange mechanism of the 3P1P treatment. First,
hydrolysis of MeOAc in the presence of water generates acetic
acid and methanol.36 By a protonation process, the acetic acid
molecules replace the oleic acid ligands that are bound to the
surface of the PeNCs. Second, by an acid-amine reaction, the
3P1P amine ligands react with oleic acid; this process facilitates
the detachment of oleic acid ligands.35 Removal of the long-
chain ligand in PeNC film facilitates exciton dissociation and
charge transport and may yield a decrease in exciton binding
energy and an increase in radiative recombination time.
To gain insight into the function of amines in the ALE

process, various types of amines (propylamine, PA; dipropyl-
amine, DPA; benzylamine, BA; 3P1P) were used to treat
FAPbI3 NC SCs. PA is a primary alkylamine, and DPA is a
secondary alkylamine. The various amines had different effects
on the photovoltaic parameters of the FAPbI3 NC SCs (Table

S1, Supporting Information). These effects result primarily
from the interaction between amine and oleic acid. The
reactivity of amines with acids follows the order of secondary
alkylamine > primary alkylamine > amines with phenyl
groups.35 This trend implies that amines that have excessively
high reactivity with oleic acids may displace too many acid
ligands from the FAPbI3 NC surface and thereby increase
defect density and degrade film stability. Indeed, both the VOC
and FF of FAPbI3 NC SCs decreased after treatment with PA
or DPA compared to 3P1P (Table S1, Supporting
Information); this comparison indicates that defect density
was higher in the films treated using PA or DPA than in those
treated using 3P1P. However, treatment with BA yielded
inferior photovoltaic parameters compared to treatment with
3P1P. This disparity arises from BA’s weaker basicity relative
to 3P1P, because of the electron-withdrawing property of
phenyl groups in BA.37 This distinction is evident in the lower
JSC in the BA-treated device than in the 3P1P-treated device.
Subsequently, the stability of FAPbI3 NC films treated with

3P1P or DPA was compared by measuring photoluminescence
(PL) and absorbance (Figure S6, Supporting Information).
After exposure to amines, the films were subjected to harsh
conditions (>80% relative humidity) for 18 h. In the pristine
film, the PL peak shifted slightly, and the absorbance
decreased; these changes indicated phase degradation of
FAPbI3. However, in the FAPbI3 NC film that had been
treated with 3P1P, the PL peak and absorbance did not change
discernibly; this result indicates that PeNC films treated with
3P1P have good stability. In contrast, in the FAPbI3 NC films
treated with DPA, the PL peak shifted severely and the peak
broadened, accompanied by a drastic decrease in absorbance.
These results indicate that 3P1P amine is more suitable than
DPA for treating FAPbI3 NC films because 3PIP has
appropriate reactivity with oleic acids.
The TrPL curve (Figure 2c) was fitted using a triexponential

function to obtain estimates of each component (Table S2,
Supporting Information). 3P1P treatment increased the
average PL lifetime of the PeNC films from 1.0706 to 2.016
μs; this change indicates the prolongation of the radiative
recombination processes.
To elucidate the recombination and transport properties of

charge carriers, we performed transient photovoltage (TPV)
and transient photocurrent (TPC) measurements. To calculate
lifetime τ, each TPC curve (Figure 2d) and TPV curve (Figure
2e) was fitted using a stretched exponential function38
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where τ is the lifetime and β is the stretching exponent
between 0 and 1. Generally, characterization techniques such
as TPV and TPC can unveil the intricacies of device
performance by elucidating charge carrier dynamics, encom-
passing both bulk and interface effects.39 These effects are
influenced by material properties and modifications, which
impact phenomena, such as recombination and charge
extraction. Therefore, in our study, we utilized stretched
exponential decay fitting to broadly correlate material
modifications with charge carrier transport dynamics. Follow-
ing the 3P1P treatment, the TPV lifetime increased from 3.6 to
8.3 μs, whereas the TPC lifetime decreased from 791 to 509
ns. The prolonged lifetime of TPV signifies a diminished trap
density on the surface of PeNCs, which reduces nonradiative
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recombination. The shortened lifetime in the TPC curve
indicates an increase in charge extraction; this change can be
attributed to the decrease in the number of ligands
surrounding the PeNC surface.
To gain insight into the carrier-transport ability and

recombination property, we conducted impedance spectrosco-
py (IS) using an appropriate equivalent circuit (Figure S7,
Supporting Information). The IS spectrum (Figure 2f) consists
of two circles. The large one corresponds to Rrec, and the small
one (Figure 2f inset) corresponds to RCT (Rs, series resistance;
RCT, charge transport resistance; Rrec, recombination resist-
ance).40 3P1P treatment decreased RCT from 519.7 to 361.3 Ω
but increased Rrec from 7586 to 33233 Ω (Table S3,
Supporting Information). These findings indicate that the
3P1P treatment increased charge transport and decreased
charge recombination.
We also obtained temperature-dependent PL spectra to

compare the exciton binding energy, Eb, in both pristine films
and those treated with 3P1P (Figure 3a−d). Eb was estimated
by the integrated PL intensity to a function of (kBT)−1 41

=
+

I T
I

Ae
( )

1 E k T
0

/( )b B (2)

where kB is the Boltzmann constant and T is absolute
temperature. Pristine films had Eb = 216.2 meV, whereas 3P1P-
treated films had Eb = 184.0 meV. This decrease indicates that
3P1P treatment promotes exciton dissociation, which
decreases Eb.
For a comprehensive understanding of defect-induced

nonradiative recombination within the perovskite layer, we
measured the effect of light intensity I on open-circuit voltage

VOC (Figure S8, Supporting Information). The relationship
between I and VOC is typically described as42

= +V
nkT

q
I ClnOC

(3)

where n is the ideality factor, k is the Boltzmann constant, q is
the elementary charge, and T is the absolute temperature. n
can be derived from the slope of the graph. When trap-assisted
recombination is dominant, n approaches 2. Pristine devices
had n = 1.6 whereas 3P1P-treated devices had n = 1.1; this
decrease signifies a decrease in the number of traps in the
perovskite layer.
To quantitatively analyze the trap states within the FAPbI3

NC layer before and after the 3P1P treatment, we measured
the space-charge-limited current (SCLC). SCLC measurement
was performed on electron-only devices that had the structure
ITO/SnO2/PeNCs/PCBM/Ag. In both pristine and 3P1P-
treated devices, the slope of current versus voltage was close to
1 at low voltage (Figure 4); this slope is characteristic of
Ohmic contact behavior. The slope increased suddenly when
the voltage exceeded the trap-filled limit voltage, VTFL, at which
all traps in the perovskite layer were occupied. Additionally,
there was negligible hysteresis effect on forward and reverse
voltage sweep. The electron trap density (ntrap) derived from
VTFL was 2.59 × 1017 cm−3 in pristine devices and 1.37 × 1017
cm−3 in 3P1P-treated devices (Table S4, Supporting
Information). 3P1P treatment decreased the trap density by
half; i.e., the 3P1P treatment passivated many defects. Trap
density of states (tDOS) was also determined through analysis
of the Mott−Schottky plot and capacitance−frequency curve
(Figure S9), with detailed calculation methods provided in the
Supporting Information. Notably, tDOS values were markedly

Figure 3. (a−d) Temperature-dependent PL of pristine films and 3P1P-treated films.
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lower in devices treated with 3P1P compared to pristine
devices, especially within the energy range of 0.3−0.45 eV
(Figure S10).
To gain a thorough understanding of the exciton dynamics

of 3P1P treatment which affected Jsc in PeNC SCs, we used
photoexcitation-polarization-dependent Jsc measurements.43−45

We subjected both pristine and 3P1P-treated devices to
linearly and circularly polarized photoexcitation with the same
intensity from a 405 nm continuous-wave laser, while
monitoring Jsc under excitation intensities of 700 and 300 μW.
When photogenerated excitons develop an intrinsic mutual

interaction between either orbital electrical polarizations or
orbital magnetic dipoles, linearly and circularly polarized
photoexcitations with the same intensity can inevitably
generate different Jsc; this is the ΔJsc phenomenon. ΔJsc is
defined as ΔJsc = (Jcircular − Jlinear)/Jlinear, where Jcircular and Jlinear
represent photocurrent densities under circularly and linearly
polarized photoexcitation, respectively. Linearly polarized
photoexcitation corresponds to antiparallel orbital magnetic
dipoles with out-of-phase orbital polarization between excitons,

whereas circularly polarized photoexcitation corresponds to
parallel orbital magnetic dipoles with in-phase orbital polar-
ization between excitons. Therefore, the examination of ΔJsc
can help to elucidate how exciton dynamics can increase Jsc in
PeNC SCs after surface treatment. ΔJsc provides three insights
for exciton dynamics of the 3P1P treatment which increases Jsc.
First, circularly polarized photoexcitation of our PeNC films

induced higher Jsc than linearly polarized photoexcitation
(Figure 5a,b). This “positive-ΔJsc phenomenon” indicates that
the exciton−exciton interaction intrinsically occurs through
parallel orbital magnetic dipoles, which favor the generation of
Jsc in our PeNCs.
Second, 3P1P treatment of PeNC films increased their ΔJsc;

this result indicates that exciton−exciton interaction through
orbital magnetic dipoles creates more excitonic states that are
available to generate Jsc, compared to untreated PeNCs.
Clearly, the surface treatment can essentially influence the
exciton−exciton interaction within PeNCs.
Third, increasing photoexcitation intensity induced a larger

ΔJsc in the 3P1P-treated PeNC film than in the pristine PeNC
film (Figure 5c,d). This result indicates that as the exciton
density increases, the Jsc generated by the exciton−exciton
interaction also increases; this result implies that self-
stimulated dissociation occurs between excitons in our
surface-treated PeNCs.
The efficient ligand removal and defect passivation through

the 3P1P treatment led to an increase in Jsc and FF in the
FAPbI3 PeNC solar cell, as depicted in Figure 6a. Table S5
provides a comparison of the champion photovoltaic
parameters between the pristine and 3P1P-treated devices.
The integrated Jsc calculated from the external quantum
efficiency (EQE) (Figure 6b) was 16.86 mA/cm2 in the
pristine devices and 17.17 mA/cm2 in the 3P1P-treated
devices. These values differed by only ∼2% from the values
obtained from the J−V curve, which were 16.64 mA/cm2 in the
pristine devices and 16.91 mA/cm2 in the 3P1P-treated

Figure 4. SCLC curve of the pristine and 3P1P-treated devices
(solid line, forward scan; dashed line, reverse scan).

Figure 5. ΔJsc under polarized photoexcitation: (a,b) with pristine and 3P1P-treated devices, and (c,d) with different photoexcitation
intensities.
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devices. The bandgap of the FAPbI3 NC films was extracted
from the EQE spectrum by reported methods46,47 (Figure
S11). However, no difference in the bandgap was observed
between the pristine and 3P1P-treated NC films. Hence, it can
be concluded that the improved performance of the devices
after treatment cannot be attributed to a change in the
bandgap. Measurements on 40 devices revealed that 3P1P
treatment significantly increased the average PCE of the
devices (Figure 6c) and other parameters (Figure S12,
Supporting Information). Moreover, devices treated with
3P1P exhibited negligible hysteresis, as evidenced by a low
hysteresis index | |( )PCE PCE

PCE
reverse forward

reverse
= 5%.

The 3P1P-treated devices were more stable than the pristine
devices. We evaluated the operational stability of pristine and
3P1P-treated devices under 1 sun illumination (Figure 6d).
Both devices were encapsulated within an N2 atmosphere. The
initial PCEs for the pristine and 3P1P-treated devices were
13.27% and 15.06%, respectively. After 1000 min, the
efficiency decreased to 54% of its initial value in the pristine
device, but only to 78% in the 3P1P-treated device. We also
measured the storage stability of devices (Figure S13 in the
Supporting Information). Both the pristine and 3P1P-treated
devices were stored in dark conditions under an N2
atmosphere with encapsulation. After 700 h, the pristine
devices retained 50% of their initial PCE, whereas the 3P1P-
treated devices retained 84%. These results demonstrate that
the 3P1P treatment effectively increases the stability of SC
devices.
In this work, we use amine-assisted ligand exchange (ALE)

by using methyl acetate with 3P1P as a washing solvent for the
FAPbI3 NC film, to efficiently remove long-chain ligands from
the surface of the PeNCs. Ligand removal by 3P1P treatment
passivated the PeNC film and decreased the number of trap
states and the exciton-binding energy. Consequently, charge
transport and extraction properties were increased, and
nonradiative recombination was decreased. The 3P1P-treated
devices showed increased Jsc = 17.982 mA/cm2 and PCE =

15.56%. 3P1P treatment also increased the operational and
storage stability of the device. Our study demonstrates that
3P1P treatment on PeNC films is an effective strategy to
increase the electrical characteristics and stability of FAPbI3
PeNC SCs. This study will contribute to the further
development of SCs that use FAPbI3 PeNCs.
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