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ABSTRACT

Organic light-emitting diodes (OLEDs) have demonstrated remarkable advancements in both device lifetime and luminous
efficiency. However, insufficient operation lifetime due to device degradation remains a major hurdle, especially for
brighter devices. Understanding the degradation mechanisms of OLEDs due to the degradation of functional materials
and the formation of defects in device architectures continues to be a significant challenge. Herein, we evaluate the
degradation characteristics by scrutinizing the electrical and optical properties, as well as analyzing the charge carrier
dynamics in pristine and aged states of phosphorescent OLEDs (PhOLEDs). We show that degradation mechanisms in
PhOLEDs can be elucidated in terms of the ideality factors of current and luminance in pristine and aged device states.
The consistent shifts in distinct ideality factors across various states points out that the device degradation is attributed to
the deterioration of the guest material, i.e. green-light-emitting phosphorescent material. Conversely, the incongruity in
ideality factor changes between the two states indicates that the degradation results from the deterioration of non-light-
emitting material. Subsequent characterization experiments provide further evidence that this degradation is primarily
attributed to the deterioration of CBP-host material. The thorough understanding of degradation mechanisms established
in this study can contribute to realing the highly reliable PhOLEDs with a long lifetime.
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leading to high manufacturing costs. Therefore, it is still essential
to deeply understand the underlying degradation mechanism in

1 Introduction

Organic light-emitting diodes (OLEDs) represent a class of
popular lighting and display devices due to their ultra-thin
structure, high efficiency, low power consumption, and flexible
and bendable properties [1-6]. Based on those advantages,
phosphorescent OLEDs (PhOLEDs) have been already
commercialized as displays for TV and mobile. However,

the host-dopant system to continuously improve the operation
lifetime of OLED [7-10]. The intrinsic degradation of OLEDs is a
highly complex phenomenon, as these devices typically consist of
several functional layers, including the injection layer, transport
layer, and emission layer. The inefficient charge carrier transport

PhOLEDs with host-dopant systems still have lower stability
compared to fluorescent OLEDs and require a complicated
tandem structure improving device lifetime for commercialization,

processes are induced by the degradation of functional materials
and the formation of defects within the device layer under
electrical stress [11-14]. Therefore, studying the physical processes
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related to the charge carrier injection and transport plays a critical
role in comprehending the degradation mechanisms of OLED
devices [15-18].

In particular, host-guest system phosphorescent dye-doped
OLEDs (PhOLEDs) have two distinct recombination and
emission pathways in the emission layer (EML). One pathway
involves exciton formation on the host material, followed by
energy transfer to the guest material, known as Langevin
recombination [19-22]. The other pathway is direct
recombination on the guest material via charge carrier trapping,
referred to as trap-assisted recombination [23-26]. These two
mechanisms are mutually competitive in PhOLEDs and it is
difficult to determine which mechanism is dominant. Identifying
this mechanism may provide a crucial clue for achieving high-
performance PhOLEDs. However, very little fundamental research
has been conducted to address this issue.

Charge carrier dynamics in organic semiconductors have been
widely investigated using electrical characterization techniques
such as steady-state current density-voltage characteristics [27,
28], measurement in the time- or frequency-domain [29,30],
transient currents [31,32], and impedance spectroscopy [33, 34].
Although these techniques effectively study the charge carrier
dynamics, it is difficult to elucidate the degradation mechanisms
related to exciton dynamics. Evaluation of the charge carrier
distribution, including both transported and accumulated charges
carriers, is therefore a crucial aspect in comprehending the
correlations between charge carrier and exciton dynamics. In this
context, we aim to link the luminance decay with its electrical
characteristics via various characterization methods, establishing
descriptive and easily understandable model for identifying,
correlating, and quantifying the underlying degradation processes.
Moreover, it investigates the impact of organic material
degradation on charge carrier dynamics and exciton dynamics,
ultimately influencing device performance and stability.

2 Experimental section/methods

2.1 Device fabrication

The constituent materials of the PhOLED devices are organized as
follows. A 70 nm thick indium tin oxide (ITO) coated glass
substrate is used as the anode. The polymeric gradient hole
injection layers (GraHILs) consist of PEDOT:PSS (Poly(3,4-
ethylenedioxythiophene)-poly  (styrenesulfonate)) and  PFI
(Perfluoro-3, 6-dioxa-4-methyl-7-octene-1-sulfonic acid). For the
hole transport layer (HTL), a 15 nm thick layer of TAPC (4,4
cyclohexylidenebis [N, N-bis(4-methylphenyl) benzenamine]) is
employed. As for the electron transport layer (ETL), a 55 nm thick
layer of TPBi (2,2',2“(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-
benzimidazole)) is used. The double emission layers consist of
TCTA and CBP, serving as the host materials for the emitting
layers (each 5 nm). A green-light-emitting phosphorescent
material, Ir(ppy),(acac), is incorporated as the dopant material
with a co-deposition of 3% with TCTA and 4% with CBP. These
layers are sequentially deposited with appropriate thickness for the
intended device structure by thermal evaporation. Lastly, lithium
fluoride (1 nm) and aluminum (100 nm) layers are sequentially
deposited on the ETL to form the cathode. The fabricated OLED
devices are sealed by glass encapsulation by using a UV resin with
a getter. The schematic of the fabricated OLED device is shown in
Fig. 1(a), while Fig.1(b) shows the EL process of multilayer
PhOLED structure. As revealed by the ideality factor (see more
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details below), devices A and B with the same structure exhibit
different optoelectronic characterization results, due to the
degradation of guest and host materials, respectively. Holes and
electrons are injected from the anode into the HTL and the
cathode into the ETL, respectively. Subsequently undergoing
charge carrier transport to the EML, recombining and forming
excitons by the Coulomb force, resulting in light emission.

2.2 Device characterization

To comprehend the degradation mechanisms of PAOLED devices,
we conducted optoelectronic measurements, i.e., the luminance-
current density-voltage (L-/-V) characteristics and the EL spectra,
using a source meter (Keithley 2602b) and a spectroradiometer
(Minolta CS2000), respectively. The PhOLEDs were driven at a
constant current density of 20 mA/cm’ with monitored electrical
and optical characteristics for device degradation study.
Capacitance-voltage (C-V) characterizations were conducted by
using an Agilent 4282A precision LCR meter with a frequency for
the capacitance measurement of 1 kHz, with a modulating
amplitude of 30 mV for observing the charge modulation. For
electrical aging, the devices were driven with a constant current
density (10 mA/cm?) and characterized every 12 hours for all
experiments described above. All experiments were carried out at
room temperature. Interestingly, we discovered that while both
devices A and B exhibited a similar degradation trend, they
manifested distinct degradation mechanisms by analyzing ideality
factors of current and luminance.

3 Results and discussion

3.1 L-J-V characteristics

The measurement of L-J-V and external quantum efficiency
(EQE) characteristics under electrical stress for both devices are
shown in Fig.2 (Figs. S1-S3 in the Electronic Supplementary
Material (ESM)). At the constant current density of 0.3 mA/cn’,
the operation voltage increases from 3.99 (0 h) to 6.56 V (72 h)
(Fig. S1(a) in the ESM) and the luminance decreases from 345 (0
h) to 56 cd/cm’ (72 h) (Fig.S2(a)) in device A; the operation
voltage increases from 3.93 (0 h) to 5.36 V (72 h) (Fig. S1(b) in the
ESM) and the luminance decreases from 356 to 154 cd/cm’ (Fig.
S2(b) in the ESM) in device B. The EQE changes between pristine
and aged states for both devices are shown in Figs. 2(c) and 2(d),
the values decrease from 27.1% and 27.5% to 18% and 21%,
respectively. However, a simple analysis of electrical and optical
characteristics is insufficient to provide a detailed degradation
phenomenon.

To analyze in more depth, we study the carrier recombination
mechanisms that impact the electrical and optical properties of
PhOLED devices. In brief, the different mechanisms can be
reflected in the L-J-V properties and the ideality factors
characteristics of the devices, which can be described through the
Shockley diode equation [35], given by

J = J[exp(qV/nkT) —1] (1)

where g stands for the elementary charge, T is the absolute
temperature, k is the Boltzmann constant, # is the ideality factor
for the injection current, and J; is the reverse saturation current
density, J is the injection current density. The # value can be
extracted from Eq. (1) as follows:

n=(q/kT)(dIn]/IV)™ (2)
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Figure1 (a) Schematic of PhAOLED material stack structure. (b) Energy level diagram of PhOLED.
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Figure2 The characterization of PhAOLED devices is performed between pristine and age states. (a) L-I-V properties and (c) EQE curves of device A. (b) L-I-V

properties and (d) EQE curves of device B.

The # value in Eq. (2) can reflect the carrier transport and
recombination in a device. The # value of 1 reveals bimolecular
recombination (Langevin recombination) [22]. When the trap-
assisted recombination competes with the bimolecular
recombination, the # value typically falls within the range of 1 and
2 (1 < 5 < 2) [26]. If the trap-assisted recombination becomes
dominant, the # value of 2 characterizes the Shockley-Read-Hall
(SRH) recombination [22, 26, 36]. The existence of defects inside
the PhOLED devices causes the ideality factor to significantly
exceed 2, as reported in several articles [36, 37, 38].

The 7 curves in their pristine state for both devices are shown
in Figs. 3(a) and 3(b) in the ESM. According to Table 1, the
minimum # 7, values are 2.66 and 3.15, respectively, which can be

attributed to leakage current and/or trap-assisted recombination.
However, in aged states, the determined # values increase
significantly to 3.93 and 4.23, respectively, indicating the change in
charge carrier transport and increase in defect density. Analysis of
ideality factor # suggests an inefficient carrier injection and a
severely deteriorated transport layer [26, 36, 37]. Electrically driven
PhOLEDs convert electrical energy into light emission through
charge carrier injection and radiative recombination. Thereby the
recombination mechanisms can also be identified by the ideality
factor from the luminance (7o) [26,39-43]. In the EL
characteristics, the luminance, L, presents an exponential
dependence on voltage as follows:
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Figure3 The ideality factors from the current density and luminance between pristine and aged states in (a) device A and (b) device B.

Table1 Comparing ideality factor values from the current density and luminance between pristine and aged states

Minimum # value (V) Minimum #,, value (V)

PhOLEDs
Pristine Aged Pristine Aged
Device A 2.66 3.93 2.59 4.11
Device B 3.15 4.23 2.84 3.20
L ocexp(qV/1,,kT) (3) such as a decrease in peak capacitance (Ceq) and a shift of peak

At low voltages, the ideality factor of luminance, 7, directly
reflects the competition of various recombination processes,
analogous to the case for the ideality factor of current. With the
voltage increase, the light emission deviates from the exponential
behavior, indicating that the injected current has reached the space-
charge limit. The 7, value determines the slope of the exponential
luminance and can be directly obtained by numerical
differentiation using the following equation:

Mo = (4/KT)(IInL/IV) (4)

The 7, curves in their pristine state for both devices are also
presented in Figs. 3(a) and 3(b) to allow for a comparison with the
1 curves. Referring to Table 1, the minimum 7, values are 2.59
and 2.84, respectively, indicating that trap-assisted recombination
is the dominant mechanism. Unlike the ideality factor of current,
the significance of ideality factor of luminance lies in identifying
radiative recombination processes. This suggests that the trap-
assisted recombination, which occurs on the guest molecules,
Ir(ppy),(acac), acting as the trap-assisted recombination centers, is
a radiative recombination process.

Following the electrical stress, the minimum 7,y value for
device A rapidly increases to 4.11, implying that the increase in
nonradiative recombination at the guest molecule sites due to the
degradation of the guest molecules. In contrast, the minimum #7,,,
value increases to 3.20 for device B, which is much less than that
of device A. Furthermore, the difference in the ideality factors of
current and luminance for aged device B suggests that the
degradation mechanism and position can be attributed to other
organic materials. A thorough analysis of electrical and optical
experiments will illuminate the degradation mechanism in device
B.

3.2 Capacitance characteristics

The impedance characterizations (Figs. S4 and S5 in the ESM) of
PhOLEDs provide detailed information on carrier injection, trap
accumulation, and device degradation. The C-V characteristics of
pristine and aged states for both devices are shown in Fig. 4.
Qualitatively, both devices exhibit similar degradation tendencies,

{27 mm | Sci@pen

voltage (Vpu) towards a higher value.

The accumulation of space charges at the TCTA/TATC
interface results in charged excitations, such as polarons or
bipolarons, inducing dipole orientation and negative dipole
moment formation. Holes can be easily injected into the EML
through the GraHIL, even at 0 V or lower voltage [44-46]. TCTA
and CBP act as host materials for the double-emitting layers. The
deep highest occupied molecular orbital (HOMO) level (0.3 eV)
and high lowest unoccupied molecular orbital (LUMO) level (0.5
eV) shown in Fig. 1(b) at the TCTA/CBP interface lead to charge
carrier accumulation and hinder charge carrier movement. High
hole mobility (3x10™* cm?(Vzs)) and low electron mobility (10
cm’/(Vzs)) of TCTA result in more holes moving and
accumulating at the interface [47,48]. Meanwhile, the higher
energy barrier for electron injection and the perfect match of the
LUMO energy level of TPBi and CBP facilitate electron injection
into the CBP-host EML under higher voltage bias, which
combines with accumulated holes on the light emitter band-
energy level. The capacitance change depends on the relative rates
of electron injection and consumption. If the electron injection
rate is slower than the consumption rate, the capacitance
increases; otherwise, it decreases [30, 33, 45].

Both aged devices demonstrate V. shift towards a higher
value, indicating decline in carrier injection and/or transport
ability due to device degradation. The degradation products of the
TCTA host material are the primary contributors to the formation
of hole traps and exciton loss [49-51]. However, the
determination of Vy, shift is carried out by evaluating the fitting
CV curves within the hole injection region. In device A, the Vi,
values between the pristine and aged states appeared at —0.8 V,
and the capacitance increment caused by hole injection is lower
than that of the pristine device, even at a higher voltage in Fig.
4(a). This discrepancy is not consistent with the anticipated
degradation of TCTA host material. It suggests that the
degradation occurs on the guest molecules. The degraded guest
molecules no longer contribute to light emission and act instead as
charge-trapping sites and nonradiative recombination centers,
which affect charge carrier mobility and transport properties,
resulting in reduction of capacitance increment.

In the device B, it is notable that the Vy, values exhibit shift
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Figure4 The capacitance-voltage characteristics between pristine and aged states in (a) device A and (b) device B.

trend from -0.9 V of pristine state to -0.2 V of aged state.
Moreover, we also conducted fittings for the CV curves of electron
injection regions in both devices. After comparison, the value of
the relative change in the slope between pristine and aged states,
0.0057 of device A is nearly equivalent to 0.0054 of device B in the
hole injection region. Nevertheless, when considering the value of
the relative change in the slope in the electron injection region, the
value of device B (0.041) is greater than that of device A (0.025).
This observation suggests that the decline of hole injection ability
is influenced by decomposition of GraHILs [48], while the
deterioration of electron injection is attributed to the formation of
charge carrier traps at the CBP host EML and/or CBP host
EML/ETL interface, which simultaneously suppress electron
injection. The degradation products of CBP host molecules not
only act as trap sites where electrons or holes can reside but also
provide nonradiative recombination centers as well as exciton-
polaron quenching sites. Compared to device A, degraded device
B experiences a more significant impact on carrier injection and
transport properties due to the formation of traps.

3.3 EL characteristics

We compare the normalized EL spectra of pristine and aged states
for both devices in Fig.5 (Fig. S6 in the ESM). While device A
exhibits little change in EL spectra (Fig. 5(a)), the EL spectra from
device B undergo a red-shift and broadening due to the
strengthening of a shoulder peak (Fig. 5(b)). This change in the EL
spectra is generally attributed to a shift in the recombination zone
within the EML. In pristine devices, the recombination zone is
confined at the TCTA/CBP interface due to the deep HOMO level
and high LUMO level at the interface. The consistency of the EL
spectra in device A indicates that the degradation of the guest
molecules does not lead to a shift in the recombination zone. In
the aged device B, the change in steepness of the capacitance curve
(Fig. 4(b)) induced by electron injection is greater than that in
device A, implying that the accumulation of free electron density

(a)
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— Aged

A

|

Nor. EL intensity (a.u.)

~—_

0.0 T T T T —
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in the CBP host-EML becomes less. In general, free radical
species—degradation products, which serve as intermediates in
the proposed degradation mechanism, possess a singly occupied
molecular orbital (SOMO) level within the CBP HOMO-LUMO
gap. Consequently, they are anticipated to undergo facile
oxidation or reduction by charge carriers. These radicals may
function as deep charge traps, leading to the manifestation of
internal fixed charge when filled and thus leads to a rise of
operating voltage. [52-54]. Furthermore, the degradation products
derived from the CBP host material also function as nonradiative
recombination centers and exciton quenchers, leading to a
luminance loss. It is important to highlight that the single
degradation product originating from the CBP host material may
simultaneously serve as a carrier trap as well as a quenching site.
Thus, the degradation products act as charge traps, exciton
quenchers, and nonradiative recombination centers, causing the
imbalance of charge carriers in EML, which results in shift in the
recombination zone [48, 55, 56].

4 Conclusions

In this study, we have established a protocol to identify the
underlying degradation mechanism that occurs under electrical
stress via analysis of the electrical and optical characteristics of
PhOLEDs. The distinct impacts of the degradation of different
organic materials on charge carrier and exciton dynamics have
been demonstrated. Analysis of the quantitative factors, such as
the ideality factors obtained from the L-I-V characteristics, has
indicated that the change in charge carrier transport and
accumulation properties within the EML may be responsible for
device degradation. It is conjectured that, after electrical stress, the
degradation of PhOLEDs with an identical architecture can be
caused by diverse degradation mechanisms. This variation may be
attributed to the formation of distinct degradation products
through electrochemical reactions involving various organic
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Figure5 The normalized EL spectra between the pristine and aged states in (a) device A and (b) device B.
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functional materials, consequently influencing the charge carrier
distribution in the EML. Furthermore, all the resulting byproducts
directly or indirectly contribute to the degradation of the electrical
and optical performance of PhOLEDs. The comparison between
ideality factors of current and luminance provides a
straightforward and powerful means of comprehending the charge
carrier and exciton dynamics for deducing the physical model that
underpins the degradation phenomenon. This thorough
understanding of degradation mechanisms may be beneficial for
enabling highly reliable PhOLEDs with a long lifetime.
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