

Tae-Woo Lee

Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea

E-mail: twlees@snu.ac.kr

Metal Halide Perovskite Nanoparticle based Color Conversion Film Technology

Research Background

- Organic emitters have low color purity, complex synthesis route and low charge carrier mobility.
- Inorganic quantum dot (QD) emitters have size-dependent color-purity and high material costs.
- Metal halide perovskite emitters which have sizeindependently high color-purity and low material cost should be developed.

Technology

Perovskite Nanoparticles $(\geq D_B)$

- Perovskite nanoparticle (NPs) with a dimension $> D_B$ (regime beyond quantum size) have size-insensitively high color-purity (full width at half maximum (FWHM) ~ 20 nm) and wavelength of emitted light, thus, we do not need to consider size distribution.
- Perovskite NPs manage the recombination of excitons occurred at surface traps and inside the NPs, thus show high PLQE > 70%.

Perovskite NP Color-Conversion Film

 Perovskite NP based color conversion film can down-convert the blue light to green, red, white light with high color purity.

Patents

 Wavelength conversion substance, manufacturing method of the same and light-emitting device comprising the same (10-2014-0153967, PCT/KR2015/011957)

Applications

Display Laser Lighting